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Abstract. AlphaZero-like Monte Carlo Tree Search systems, originally
introduced for two-player games, dynamically balance exploration and
exploitation using neural network guidance. This combination makes
them also suitable for classical search problems. However, the original
method of training the network with simulation results is limited in
sparse reward settings, especially in the early stages, where the network
cannot yet give guidance. Hindsight Experience Replay (HER) addresses
this issue by relabeling unsuccessful trajectories from the search tree as
supervised learning signals. We introduce Adaptable HER (AHER), a
flexible framework that integrates HER with AlphaZero, allowing easy
adjustments to HER properties such as relabeled goals, policy targets,
and trajectory selection. Our experiments, including equation discovery,
show that the possibility of modifying HER is beneficial and surpasses
the performance of pure supervised or reinforcement learning.

Keywords: Hindsight Experience Replay · AlphaZero · Monte Carlo
Tree Search · Deep Reinforcement Learning.

1 Introduction

Adaptive learning systems often face significant challenges due to the scarcity
of high-quality training data in complex domains. To steer the search process
in complex environments, neural-guided Monte Carlo Tree Search (MCTS) has
emerged as a promising approach. However, sparse learning signals can still result
in ineffective and resource-heavy training. To counter this problem, Hindsight
Experience Replay (HER) transforms failures into valuable learning experiences
by copying a complete historic trajectory and exchanging the original goal with
one of the states in the search tree. Creating artificial positive training signals
enables the neural network to capture a more comprehensive understanding of
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the search space. While other works [8,10] have already combined HER with
neural-guided MCTS, we introduce a unifying, widely applicable Adaptable HER
framework (AHER) and extract the critical parts of HER. Our contributions are
threefold: I We develop a flexible HER framework that can be seamlessly
integrated into various environments and search algorithms by following the
gymnasium interface [14]. II We confirm that HER consistently improves the
performance of neural-guided MCTS, but highlight the need for a customiz-
able HER framework, as optimal configurations vary across environments.
III We showcase in the domain of equation discovery that AlphaZero [11] with
HER outperforms both pure reinforcement learning and pure super-
vised learning.

2 Methodology

Before explaining AHER in detail, we first give a brief overview of the AlphaZero
training. We then finish this section with empirical results.

2.1 AlphaZero

The baseline learning approach selected for our experiments is a variation of
AlphaZero [11]: a well-known neural-guided MCTS algorithm created by Deep-
Mind that achieved superhuman performance in Shogi, Chess, and Go. Its core
idea lies in combining MCTS and a neural network policy. The policy guides the
MCTS, and the search results function as training targets. After each episode,
the network receives feedback by being trained on state transitions sampled from
its Experience Replay. This paradigm can also be generalized to other games,
including single-player ones, as required for our case. The Training routine is
illustrated in the dashed frame of Fig. 1 as part of our AHER architecture.

2.2 AHER

Depending on the task, there are various configurations for HER [8,10,1], which
we unify into the following four properties: (1) In the goal selection strategy, we
can choose between the “future” strategy, relabeling states visited later in the
current episode as HER-goals, or the “final” strategy, relabeling only the terminal
state. (2) By selecting between a single- or multi-trajectory, we choose whether
only the played trajectory of an episode is used to generate HER samples or a
random subset from the MCTS search tree. (3) The following property defines
how many HER samples are added to the replay buffer per trajectory. (4) The
last property defines the policy learning target for the HER samples. We can
choose between the original MCTS probabilities, a one-hot array, or a one-hot
array with uniform noise.

By covering these four properties, we introduce a customizable implementa-
tion of HER for AlphaZero (Fig. 1), which allows us to measure the influence of
these properties on a set of learning domains.
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Fig. 1. Architectural overview of our learning setup. AHER is connected to the Al-
phaZero training loop. An iteration of the loop consists of performing neural-guided
MCTS, sampling batches from the experience replay buffer, and training the predictor
neural network.

2.3 Setup

Our implementation is derived from the AlphaZero General [13] and MuZero
[15] codebases with MCTS modules written by [3] and adapted to be compatible
with single-player games by [2]. We chose to use three learning environments
for our experiments: bit-flipping [1], point maze from Gymnasium Robotics [7]
(with action space discretized to 8 equidistant moves), and equation discovery
from a table of measurements by [2]. The code used for this paper is available
at: https://github.com/my-curiosity/her-neural-mcts.

For the policy, we utilize a 3-layer multi-layer perceptron (MLP) with 256,
256, and 128 neurons respectively, ReLU activations, and a 0.3 dropout rate
in bit-flipping and point maze. In equation discovery, the equation syntax trees
and measurement datasets are separately encoded by a transformer (2 layers,
4 heads, 8-dimensional vectors) and an LSTM network (64 units), respectively.
Their output is then combined, and separate MLPs (64/64, ReLU) are used to
predict the value of the current state and action (rule of the grammar, describing
how to construct an equation), to be applied next.

To evaluate performance in bit-flipping and point maze, we consider the
success rate, mean total return, and the number of iterations necessary to reach
a success rate of 80%. In equation discovery, however, we are more interested in
finding the best equations than in average performance. Therefore, we instead
measure how many nodes are expanded by MCTS before a suitable formula is
found, as done in previous work [2].

2.4 Empirical Results

Bit-flipping. Bit-flipping is a task of transforming binary arrays by inverting
values, one at a time, to reach given target configurations. It was used to demon-
strate the effectiveness of HER to mitigate reward sparsity [1]. Learning with
AHER was most successful with 4 “future” goals. Further increases resulted in
reaching a success rate of 0.8 faster at the cost of slightly degrading the episode

https://github.com/my-curiosity/her-neural-mcts
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returns. Even though one-hot policy targets led to approximately 3.5% more fail-
ures, adding weak uniform noise negated this effect and even slightly raised the
observed returns. Multi-trajectory HER failed; most likely because the average
MCTS trajectories were much shorter than those played. The “final” selection
strategy was not effective due to the used reward function: with negative rewards
received at each step, episode returns in relabeled trajectories were almost equiv-
alent to the original ones and lacked the diversity required for training the neural
network.

Point maze. Point maze is a physics-based navigation task, in which the agent
must lead a ball to a specified destination in a maze. We selected the medium
maze layout for all the experiments. Here, HER’s behavior was generally similar
to our observations from bit-flipping, with the following exceptions: the optimal
number of “future” samples was 8, further increases slowed down reaching the
80% solved episodes mark; one-hot and noisy policy targets having a strictly
negative influence (8–9% lower success rate); multi-trajectory HER still suffering
from the same issues as in bit-flipping but achieving comparable results with 1
and 4 random MCTS trajectories.

Equation discovery. The goal of equation discovery is to create equations
from a specified context-free grammar that describe a dataset of point measure-
ments. Unlike point maze, equation discovery is easily compatible with both
reinforcement (RL) and supervised learning (SL) methods due to optimal so-
lutions for each episode being known before interacting with the environment.
Moreover, as only terminal states correspond to complete equations, the “future”
selection strategy is not applicable, which limits the utility of single-trajectory
HER variants. On the other hand, by sampling “final” goals from random MCTS
trajectories, we improved over the previous best performance achieved by both
plain RL and SL. However, the latter remains significantly less time-consuming.
An optimum point was measured at 24 samples with the noise-free one-hot policy
targets, as original MCTS probabilities are irrelevant outside the played trajec-
tory.

General Results. The amount of HER samples used and, consequently, the ra-
tio of original data to hindsight data in the experience replay affects AlphaZero’s
performance the strongest (cf. Fig. 2). Tweaking this ratio is essential for ensur-
ing successful training and can be seen as controlling the amount of supervision
necessary for the task. With too few HER samples, the agent struggles to learn
in sparse reward settings, but with too many, it forgets past experiences and
detaches from them, becoming less stable (as discussed by [5]). The data ratio of
HER is mostly influenced by two properties, namely, the number of future goals
and the number of trajectories used for relabeling. Multi-trajectory HER is gen-
erally more difficult to apply as it performs poorly if the trajectories are short.
Still, it remains a good solution for situations in which the “future” goal selection
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is unavailable, e.g., equation discovery. The tested policy targets demonstrated
relatively similar results. However, one-hot encoding was naturally more appro-
priate when using random trajectories, as it reduces the amount of noise from
the obsolete MCTS probabilities.

Including further HER advancements. In addition to these results, we
also adapted 3 HER improvement techniques to our setup: aggressive rewards
[6], experience ranking [9], and combined experience replay [12]. As a result,
a slight performance increase was reached in all compatible tasks. We see this
direction of work as promising and having the potential to raise the effectiveness
of neural-guided MCTS with HER without requiring the implementation of new
concepts from scratch.
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Fig. 2. Performance of AHER-augmented AlphaZero. (left) Visited states in the search
tree until the correct equation is found. AlphaZero refers to training only with the
probabilities from the MCTS, AHER(k) for adding HER samples from k trajectories,
and SL (d.c.) for supervised learning with dataset changes. Dataset changes entail
sampling new x and fitting y measurements after each training step to increase training
diversity. We chose to also perform this during AHER goal relabeling. The HER samples
are added with the “final” goal selection strategy and one-hot policy targets. Failed
searches count as 1,000 visited states. (middle and right) Success rate for solving bit-
flipping with 50 bits (middle) and point maze (right) depending on the number of HER
samples. The HER samples are added with the “future” goal selection strategy from
the played trajectory and original MCTS probabilities. We display the mean and 95%
confidence intervals of 5 runs.

3 Related Work

Although HER was initially intended for off-policy deep RL, it has been deployed
with neural-guided MCTS in AlphaZeroHER [8] and Minimo [10]. AlphaZero-
HER shows that such a setup can outperform DQN (Deep Q-Network) with HER
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in multiple domains, but only considers the played trajectory for goal relabel-
ing, “future” goal selection strategy, and original MCTS probabilities as a policy
learning target for AlphaZero. Conversely, Minimo applies multi-trajectory HER
to prove mathematical and logical conjectures, but utilizes environment-specific
optimizations such as ignoring irrelevant subtrajectories. Additionally, the work
uses a large language model agent, which changed the required form for train-
ing samples. Continuing this line of work, we analyze the influence of HER on
learning in different configurations and on various tasks.

4 Limitations and Outlook

Due to the nature of MCTS, which is used as a search backbone, our implementa-
tion does not support continuous action spaces, and the necessary discretization
is not always possible without a loss in performance or an increased training
time. Furthermore, we only use straightforward policy learning targets (origi-
nal probabilities and one-hot) that are generalizable to all domains. In future
work, we would like to analyze how AHER can be used with more target-specific
policies. Additionally, this work only considers deterministic state transition se-
quences. Systematically studying HER for probabilistic transitions and noisy
states could further increase the application scenarios where HER improves the
learning. Combining AHER with existing HER advancements is also expected to
strengthen its performance; especially useful would be the curriculum mechanism
[4], which could aid both trajectory and goal choices for relabeling.

5 Conclusion

This work introduces AHER: an adaptable HER implementation for neural-
guided AlphaZero-like MCTS, in which multiple architectural aspects can be
configured. Leveraging it, we first analyze the influence of applying HER to
AlphaZero to solve three domains. HER’s inclusion in the AlphaZero setup allows
us to solve domains otherwise unsolvable by neural-guided MCTS. We observe
that being able to select a type of HER to use with a given task can be beneficial,
even for tasks such as point maze and bit-flipping, where the highest performance
metrics correspond to the “baseline” variant by [8]. Having the flexibility to
change the HER properties allows us to measure the relative importance of each
HER property for successful training. Moreover, it is essential for new domains,
where the preferred type of HER-assisted learning is unknown and difficult to
guess. In the equation discovery task, we show that neural-guided MCTS with
AHER can outperform pure supervised and reinforcement learning if configured
correctly.
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