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Abstract. The labeling process for supervised learning is costly and
time-consuming, and is often impractical to scale due to real-world con-
straints. Active learning (AL) addresses this challenge by strategically
selecting representative and informative data points to reduce labeling
efforts. This paper focuses on an AL scenario in which only a very limited
number of labels can be acquired. We propose an algorithm operating in
two phases: (1) an exploration phase that prioritizes representative and
diverse data points using density-driven criteria, and (2) an exploitation
phase that combines predictive uncertainty with density weighting to se-
lect informative samples from densely populated regions. This enhances
both representativeness and informativeness. Our results demonstrate
significant improvements in model quality compared to other algorithms
typically employed for this scenario, across various scenarios involving
imbalanced data in classification tasks and skewness in regression tasks.
Through this work, we aim to provide a new algorithm for this scenario
and investigate general principles for AL. While most AL studies focus
on either classification or regression, our work applies the algorithms to
both. Therefore, we can analyze the differences between classification and
regression problems and their effects on AL strategies. Furthermore, we
explore different categories of AL criteria and their effectiveness in the
low-budget regime. These results also provide insight into the cold-start
problem, which involves selecting an initial labeled set and is faced by
many model-based AL methods.

Keywords: Active Learning - Classification - Regression - Low Query

Budget.

1 Introduction

In the field of machine learning (ML), there are large repositories of unlabeled
data that hold a considerable potential. However, to unlock this potential and use
them for ML labeling is necessary. The labeling process of these datasets often
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requires human effort, time, and resources. This bottleneck hinders the develop-
ment of ML models in many scenarios. The challenge is therefore to maximize
model performance with minimal labeling effort, a problem that active learning
(AL) attempts to address by intelligently selecting the most informative data
points for annotation [8|22]. The core principle of AL involves an iterative pro-
cess in which a learning algorithm actively selects the most informative unlabeled
data points from a larger pool and queries an oracle - often a human expert - to
obtain the labels. These newly labeled samples are then used to train a model,
which guides the learning process in a way that improves model accuracy (e.g. by
providing uncertainty estimates). This strategic selection reduces labeling costs
and accelerates training, making AL a valuable tool in many domains [§].

AL is generally applicable to both classification and regression tasks, with
three typical application scenarios: pool-based sampling, where the learner se-
lects points from a large pool of unlabeled data; stream-based selective sampling,
where the decision to query a label must be made without knowing which points
will arrive later in the data stream; and membership query synthesis, where the
learner generates novel points for labeling [16]. This work focuses on pool-based
sampling.

To select the best data points, each AL strategy has its own heuristics to
determine the importance of all available unlabeled points. These heuristics are
typically categorized into two general approaches: Exploration and Exploitation
[22]. Exploration-based AL methods aim to select representative or diverse data
points that represent the data distribution. Exploitation-based methods select
data points using an ML model trained on the previously selected data points.
They use the information provided by the model (e.g., the uncertainty of the
predictions) to assign a value indicating the informativeness of the data points.
Because of their reliance on the ML model, exploitation-based AL methods are
also referred to as model-based AL methods, whereas exploration-based methods
are termed model-free [6].

Most studies on AL focus on scenarios where a reasonable amount of data
points are queried. In Deep AL, thousands of points are queried (e.g. [19]) and
even in works that cover small datasets that have less than 50 dimensions and at
most a few thousand data points, the query budget often comprises around 100
data points (e.g. [BIGII3ITH]). Only very few studies deal with AL scenarios where
an extremely low budget is present. One study investigating this topic in the
context of Deep AL provides theoretical and empirical evidence that including
model-based criteria such as uncertainty in the low-budget regime of the AL
process is ineffective [3]. They claim that this phenomenon occurs because model-
based criteria depend on ML models that are of low quality due to limited
training data. This study focuses on Deep AL and therefore the authors consider
a few hundred points to still be in the low-budget regime. Going away from
Deep Learning and Big Data these budgets may not be realistic anymore. For
modelling very expensive and/or time-consuming processes, potentially only 15
or 20 data points can be selected. One example of such a process is the curing
of concrete, which depends on many factors, including storage conditions, and
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Fig. 1. Overview of the proposed AL strategy for the small data, low-budget regime.

can take up to a month [I2]. A company would most likely not be able to afford
to conduct a hundred experiments for this process, as it would take years and
require significant storage capacity. Another example is the growth of plants.
Some plants can only be harvested once a year, so again, very few experiments
are realistic [2].

For these small data, low query budget scenarios, the question remains as to
whether the observations made in [3] for deep AL are still valid. To investigate
this question, we propose a novel AL method. This method consists of two
phases: an exploration phase, which is model-free, and an exploitation phase,
which incorporates model-based information into the selection process (see Fig.
1)). By controlling the point at which the phase transition occurs in the AL
process, we can investigate the usefulness of a model-based criterion.

In summary, the main contributions of this work are as follows: We propose
and evaluate this two-phase AL strategy, specifically tailored to the small data,
low-budget regime. This method is compared to several others that are typically
used to initialize AL methods (see, e.g., [5I6/I3]) and are therefore also used
in the low-budget regime. Based on the results of this comparison, we aim to
address the following research questions (RQs) in both the classification and
regression settings. This will enable us to provide further insights into the differ-
ences between the two settings, a research area that has not been investigated
much.

RQ1: Does the inclusion of model-based AL criteria help in small data, low-budget
scenarios? If yes, at which point should the inclusion happen?

RQ2: Which types of AL criteria (density-, cluster-, distance-, informativeness-
based) are generally important to consider for a high-quality, low-budget
AL method?

The rest of the paper is organized as follows: Section 2] reviews related work,
comparing exploration, exploitation, and hybrid approaches. Section [3] details
the proposed model. Section [4] presents the experimental analysis conducted to
evaluate the performance of the proposed method. Finally, Section [5| discusses
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the findings, answers the RQs and outlines directions for future work. The code
of our method and the experiments can be found on https://github.com/
bjaster/Low-Query-Budget-ALl

2 Related Work

AL is a partially-supervised approach that combines labeled (£) and unlabeled
data (U). It uses an iterative query strategy to find new points x* for labeling,
as follows:

x* = argmax ¢(x, h) (1)

xeu

Here, ¢(-) quantifies the informativeness of an unlabeled instance x relative to
the current model A [23]. In this section, we will discuss how other studies handle
AL in the low-budget regime. Although few studies address this issue directly,
there are related challenges for which similar approaches are used.

One of these challenges is called the cold start or initialization problem, where
no labeled data is initially available to train an ML-model to guide a model-based
AL process. Since model-based AL methods depend heavily on the quality of the
initial dataset, providing this dataset is critical, as an inaccurate initial model
understanding may negatively affect the selection process [I]. For this reason,
we first examine how the existing model-based AL literature approaches the
creation of the initial labeled set. While this is not the primary focus of these
works, their strategies offer valuable insights. We then provide a concise overview
of common model-based AL strategies.

2.1 Exploration-Based Approaches

Most works on AL use a random selection to select the initial dataset (e.g. [15]).
However, there are a few works that use model-free or exploration-based AL
methods. The aim of these methods is to select samples that represent the data
distribution and are diverse from each other, thus ensuring efficient coverage of
the input space. In [5], Greedy Sampling (GSx) [26] is used for initialization
to provide a deterministic and diverse initial dataset. In [6], GSx and itera-
tive Representativeness and Diversity Maximization (iRDM) [10] are used for
providing the initial labeled set. These two methods are examples for the two
main paradigms that are used in model-free AL. While iRDM mainly focuses on
representativeness, GSx maximizes diversity.

Representativeness-based AL methods select samples that reflect the overall
data distribution, with the goal of selecting a subset that is similar to the whole
dataset [27]. A common strategy to achieve representative samples is cluster-
based sampling. Classical algorithms such as k-means clustering [IT] have in-
spired several AL methods that use cluster centroids or structural information
to guide sample selection [4J25]. Two notable examples, also used later in this
work, are the already mentioned iRDM and TypiClust [3]. The iRDM algorithm
[10] first clusters the unlabeled pool and selects samples closest to each cluster
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center. It then optimizes this selection to avoid redundant queries (more details
in Section . TypiClust is presented in the same work that investigates low-
budget AL (see chapter [1)) as a method specifically suited to this scenario [3].
It emphasizes coverage by targeting clusters that remain unrepresented in the
labeled set. It selects the most “typical” point within each such cluster, where
typicality is defined as the inverse of the average distance to its k nearest neigh-
bors.

Diversity-based methods aim to maximize the distance between the selected
points. GSx [26] starts by selecting the point closest to the centroid of the entire
unlabeled pool. In subsequent rounds, it maximizes diversity by choosing the
point furthest from all previously chosen samples in the input space.

2.2 Exploitation-Based Approaches

Exploitation-based approaches rely on the predictions of the current model to
identify samples that are likely to improve performance when labeled. These
techniques aim to fine-tune decision boundaries by focusing on regions that are
either uncertain or informative. One classical approach is Query by Committee
(QBC) [17], where multiple models are trained, and instances with the highest
disagreement among the models are selected. Another well-known strategy is
uncertainty sampling, where the the model selects samples about which it is
least confident [9/I8]. A more model-driven approach is expected error reduction
[14)28], which estimates the reduction in generalization error that would result
from labeling a candidate sample.

2.3 Hybrid Approaches

Pure exploration or exploitation may be sub-optimal. An overemphasis on ex-
ploration can lead to excessive sampling from uninformative regions. Conversely,
excessive exploitation can result in to a high concentration of data points that
provide only limited knowledge. This can lead to poor generalization and missed
discovery of new patterns or classes. As a result, many recent approaches use
hybrid strategies that dynamically balance exploration and exploitation. These
techniques either begin with exploration to broadly characterize the input space
and shift toward exploitation as the model becomes more reliable [2124] or
consider both exploration and exploitation criteria at all times by e.g. adding
them [6/15]. For example, in [24], the authors’ geometrical methods varied with
each phase. First, PCA-inspired exploration investigated regions of high vari-
ance. Then, LDA-inspired exploitation focused on the boundary points between
classes.

Building on this line of research, our work proposes a novel AL method for
low-budget scenarios that explicitly balances exploration and exploitation. Our
strategy first leverages the structural properties of the input space to later enable
a model to identify regions of high uncertainty.
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3 Proposed Method

We begin with the assumption that all available data are unlabeled, denoted as
U ={x1,x2,...,Xp, }, where x; € U represents an unlabeled data point and 7,
is the total number of unlabeled points. The labeled dataset L is initially empty
(£ = 0). The budget B defines the number of data points that can be selected.
Our method, called Low Query Budget AL (LQBAL), comprises a two-phase
approach:

1. Initialization: Our method selects m representative points from the unla-
beled pool U using one of two strategies: Cluster-based or Median-based
selection methods.

2. Two-Phase Querying: After initialization, a dynamic exploration-exploi-
tation strategy queries points until the budget B is exhausted. The mode
switches from exploration to exploitation depending on the hyperparameter
s € [0,1]. This defines which fraction of the budget should be spent on each
strategy, where s = 0 is pure exploitation after initialization, while s = 1 is

pure exploration.
— Exploration (|£|/B < s): Focuses on dense regions and uses distance

metrics to minimize redundancy.
— Exploitation (|£|/B > s): Focuses on dense and uncertain regions.

With this two-phase hybrid approach LQBAL balances broad data coverage
with targeted refinement of model performance. At each iteration, the queried
point is labeled, transferred from U to £. When the exploitation mode is active,
the model is retrained on the updated £. The process terminates when |£| = B,
returning £ and U.

3.1 Initial Selection

LQBAL comprises two options to select the initial set of points. This initial-
ization is necessary for the case s = 1, so that a model can be trained. The
median-based method ensures representativeness and robustness to outliers [24],
while the cluster-based maximizes the diversity and representativeness of the
selected data [I0].

Median-based initialization: The algorithm first removes outliers from x; €
U using the interquartile range (IQR) method:

Lower Bound = Q1 — 1.5 -IQR, Upper Bound = Q3 + 1.5-IQR,  (2)

where IQR = Q3 — Q1. The cleaned set U, is then reduced via PCA [20)] to retain
components explaining at least 7 variance (e.g., 7 = 0.9), yielding U, ,. In this
space, the median, ()1, and Q3 are computed for each dimension and the nearest
point is selected:
*

j ar%glin [xi — zjll2s  2j € {Xmedian,XQ,+XQs }- (3)
xi €U, r

X

These three points form the initial labeled set (see Fig. [2]left), covering central
and quartile regions while avoiding outliers.
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Fig. 2. Nllustration of the two initialization methods used in our model. (Left): The
median-based method removes outliers (red stars), projects the data onto the first PCA
components, and queries the median, @1, and Q3. (Right): The cluster-based method
iteratively finds points that minimize intra-class density while maximizing inter-class
separation. The black points represent the initial centroids; the blue point indicates
the updated X, while X5 and X3 remain fixed.

Cluster-based initialization: The iRDM strategy [10] balances two objec-
tives: representativeness (selecting samples near cluster centroids to avoid out-
liers) and diversity (selecting from different clusters to cover the input space).
First, K-means clustering is applied to the unlabeled set U with m clusters (de-
fault m = 3), yielding centroids { X7, ..., X,,}. From each cluster C}, the point
closest to X ; is chosen: This selection is then iteratively refined (¢max = 5 itera-
tions) using Intra-cluster Density (R(x;), illustrated by the blue lines in FIg.
right), which is defined as the mean distance to other points in the same cluster
(lower is more representative) and Inter-cluster Separation (4(x;), dashed lines
in Fig. 7 which is the distance to the nearest centroid of another cluster (higher
is more diverse). The optimal point per cluster maximizes

xj = argmax (0(x;) — R(x;) (4)
Xieucj

Refining stops when the selected candidates do not change or cpyax is reached.
The resulting labeled set £ balances representativeness and diversity, though it
may still include noisy points.

3.2 Exploration Phase

This phase aims to provide a representative and diverse dataset to minimize the
potentially negative effects of the strategy used to select the initial m points.
The points are selected from high-density areas of the unlabeled data to ensure
the selection is representative. For each unlabeled point x; € U, the average
distance to its k-nearest neighbors (default k£ = 10) is computed (similar to [3]):

. 1
AvgDist(x;) = z E lIxi — x|z, (5)
XJENk(xi)
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Fig. 3. (Left) Exploration phase strategy: The ¢ = 5 most dense points are selected
as candidates (orange triangles). The point with the highest distance (red dashed ar-
rows) to already labeled points (blue dots) is chosen for labeling (blue dashed circle).
Purple crosses indicate unlabeled data points that are excluded from the selection, be-
cause they have labeled points nearer than their AvgDist. For two excluded points the
spheres with radius AvgDist are shown (purple dashed circles). (Right) Exploitation
phase strategy: The intersection (purple triangles) between the points that are most
dense (orange triangles) and the points with the highest disagreement (green triangles)
represents the candidates (because the intersection was empty for ¢ = 5 the ¢t = 10
most dense and disagreed points are considered). From those the one with the highest
nearest neighbor distance to the labeled points is selected (blue dashed circle).

where N} (x;) represents the set of the nearest k neighbors to the data point x;.
To avoid redundant queries we exclude all unlabeled points x; that have labeled
points within a hypersphere with radius AvgDist(x;) from further consideration
(see purple circles in Fig. [3| (left) for two examples). The top t (default ¢ =
5) points with the lowest AvgDist(x;) form the candidate set C. From those
candidates, the point with the largest nearest neighbor distance to the labeled
set L is queried (see Fig. 3| (left) red arrows):

*_

X;

argmax min ||x; — Xx||2 (6)
x;,€C xx€L

By excluding points from dense regions that have already been explored and

creating a candidate set based on maximum distance to labeled points, we ensure

representativeness and diversity for a high-quality dataset that can be used in

the exploitation phase.

3.3 Exploitation Phase

In this phase, the strategy includes a model-based exploitation criterion. For
that we calculate the disagreement of a committee which is trained on £ (cor-
responds to the QBC-criterion). The disagreement o(x;) of the predictions for
an unlabeled point is calculated as the standard deviation (regression) or the
vote-entropy (classification) of the ensemble-predictions. However, rather than
selecting points based solely on disagreement, we also consider the density of the
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points (Eq. and exclude points near labeled points, as previously explained
for the exploration phase. We identify the top ¢ points (initially ¢ = 5) with
the highest disagreement and the top ¢ points with the highest density. These
candidate sets are denoted as Caisagreement and Cdensity, respectively. The query
selection is then done on the intersection of those candidate sets, which allows
to select the points that are from both dense and uncertain regions:

C= Cdisagreement N Cdensity- (7)
Out of C, the point with the largest nearest neighbor distance to the labeled set
L is queried (see Eq. @ If C = 0, t is incremented by 5 and Eq. [7| and |§| are
computed repeatedly until C is no longer empty and a selection can be made.
This strategy ensures that the selected points are not only informative, but
also representative and diverse, enhancing the quality of the results.

4 Experimental Analysis

This section presents the results that help answer the RQs and evaluate the
quality of our proposed method LQBAL. For that, we first perform a small
hyperparameter study to evaluate which switch point and initialization method
is best for classification and regression, respectively (RQ1). We then present
the comparison of our method with other AL methods typically used for initial
dataset creation (RQ2).

4.1 Experimental Settings

The comparison is performed on six regression and classification datasets. These
datasets are mostly taken from the UCI repositoryﬂ [7] with the exception of
the PMl(El, Boston Housingﬂ and Fishﬁ datasets. The datasets are mostly small
datasets with less than 1000 samples and less than 10 features, with a few ex-
ceptions like Pendigit and the Superconductivity which have a few thousand in-
stances and up to 81 features. All classification datasets are multiclass datasets
with a minimum of three classes and a maximum of ten classes. While the Iris,
Pendigit and Segmentation datasets are balanced with roughly the same amount
of points per class, the Fish and Glass datasets are imbalanced with a class-
ratios of [56,34,20,17,14,11,6] and [76, 70,29, 17,13, 9] respectively. A detailed
overview of the datasets is given in Table [1] These datasets were chosen because
they are diverse in their number of features, classes and instances and allow to
investigate the quality of different AL methods in different small data settings
and to identify strength and weaknesses of each method.

! original names (if not already used): Slump Strength — Concrete Slump Test, Super-

conductivity — Superconductivity Data, Wheat — Seeds, Segmentation — Image
Segmentation, Pendigit — Pen-Based Recognition of Handwritten Digits, Glass —
Glass Identification

2 https://lib.stat.cmu.edu/datasets/PM10.dat

3 https://lib.stat.cmu.edu/datasets/boston

4 https://www.utstat.utoronto.ca/brunner/data/legal /fish.txt
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Table 1. Characteristics of third-party datasets

Classification Regression
Dataset Classes Feats.  Size Dataset Feats.  Size
Fish 7 6 159 Airfoil Self-Noise 5 1,503
Glass 6 9 214 Boston Housing 13 452
Iris 3 4 150 Real Estate Valuation 6 414
Pendigit 10 16 10,992 Slump Strength 7 103
Segmentation 7 19 2,310 Superconductivity 81 21,263
Wheat 3 7 210 Yacht Hydrodynamics 6 308

A total of 100 independent runs of every AL method are performed on each
dataset to obtain statistically meaningful results. First, for each run, the dataset
is randomly split into an AL and test set, each containing 50% of the dataset.
Importantly, this split is kept identical across all active learners, ensuring that
each method operates under the same conditions for a fair comparison. The AL
set represents the unlabeled pool from which the active learners can query data
points. The test set is used for independent evaluation of the ML models trained
on the queried points. Each active learner is allowed to query 15 data points.
After the AL process, we evaluate the selection by training a Random Forest
(RF) on the selected data points and computing the score (macro F1-score for
classification, R2-score for regression) on the test set. The hyperparameters of
the RF are set to default (scikit-learn) except for the ensemble size, which is
increased to 200.

For the main benchmark of the classification setting we also investigate how
many classes were covered by the active learner. For that we compute the per-
centage of classes covered after the selection of 15 data points and average it
over the 100 runs. We investigate this metric since it is an important attribute
of an AL method to find all classes in the dataset. While low-budget AL may
not the right choice for datasets with more than five classes, we still wanted to
provide this information to show the strengths and weaknesses of different AL
methods.

4.2 Experimental Results

Hyperparameter study: To determine the effect of incorporating a model-
based AL criterion into low-budget AL, we evaluate the optimal value of the
switch point hyperparameter s. Additionally, we compare the two presented ini-
tialization strategies, cluster-based and median-based. The classification results
(see Table [2)) indicate that the cluster-based initialization strategy consistently
outperformed the median-based strategy, achieving peak average performance at
s =0.0 and s = 0.3. Generally, one can observe that performance decreases as s
increases, showing that a brief exploration is sufficient for classification and that
exploitation is more important. To enable at least a little exploration, we choose
cluster-based initialization with s = 0.3 for our main benchmark experiments.
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Table 2. Hyperparameter study for different initialization strategies and switch points
s (classification). Results are given as macro Fl-score.

Init. strategy
Switch point (s)

Cluster-based

0.0 03 05 07 1.0

Median-based

0.0 03 05 07 1.0

Fish 0.594 0.583 0.551 0.535 0.502  0.590 0.586 0.566 0.558 0.523
Glass 0.398 0.404 0.431 0.394 0.323  0.402 0.418 0.413 0.386 0.328
Iris 0.944 0.942 0.941 0.938 0.939 0.940 0.938 0.943 0.941 0.945
Pendigit 0.495 0.491 0.432 0.378 0.281 0.496 0.474 0.420 0.359 0.244
Segmentation 0.645 0.663 0.656 0.654 0.643 0.643 0.628 0.640 0.640 0.663
Wheat 0.890 0.885 0.883 0.882 0.878 0.891 0.888 0.884 0.880 0.878
Mean 0.661 0.661 0.649 0.630 0.594 0.660 0.655 0.644 0.627 0.597

The results for the regression setting can be seen in Table [3] As with clas-
sification, we evaluate our method with both cluster- and median-based initial-
ization and the same switching points. Similar behavior is observed between
cluster- and median-based initialization, with cluster-based performing better
overall. For both cluster- and median-based initialization, performance initially
improves with increasing exploration, peaking at s = 0.5, before declining sub-
sequently. Specifically, cluster-based initialization achieved its highest average
R2-score at this point. This shows that exploration is more important for regres-
sion than classification, though exploitation is still crucial for good results. For
this reason, we selected cluster-based initialization with s = 0.5 for our main
benchmark experiments.

Table 3. Hyperparameter study for different initialization strategies (cluster- and
median-based) and switch points s (regression). Results are given as R2-score. Best
results marked in bold.

Cluster-based
00 03 05 07 1.0

0.071 0.122 0.164 0.147 0.104
0.588 0.591 0.586 0.565 0.540
0.444 0.470 0.465 0.427 0.460
0.291 0.286 0.295 0.307 0.312
0.450 0.460 0.480 0.456 0.408
0.717 0.740 0.694 0.721 0.371

0.427 0.445 0.447 0.437 0.366

Median-based
00 03 05 07 1.0

0.116 0.127 0.158 0.133 0.106
0.534 0.545 0.569 0.558 0.507
0.279 0.310 0.305 0.292 0.307
0.282 0.276 0.277 0.293 0.295
0.267 0.311 0.312 0.305 0.224
0.787 0.802 0.799 0.784 0.616

0.378 0.395 0.403 0.394 0.343

Init. strategy
Switch point (s)

Airfoil Self-Noise
Boston Housing
Real Estate Val.
Slump Strength
Superconductivity
Yacht Hydro.

Mean

Comparison with State-of-the-Art: We compare our method with several
other methods that are suitable for the low-budget regime and applicable to
both classification and regression. In this category are mostly model-free AL
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methods that are mentioned in chapter[2] We chose the methods in a way that we
can answer RQ2 and analyze which types of criteria, namely cluster-, distance-,
density- and informativeness-based, have which impact on the results. GSx has a
distance-based criteria, while TypiClust and iRDM are chosen as cluster-based
methods. The later two also include another criteria, typicality/density-based
for TypiClust and distance-based for iRDM. Additionally, we provide the quality
of random selection (RS) as a baseline that every suitable AL method should
outperform. Lastly, we include QBC into the comparison. Also it is typically not
seen as a suitable AL method for the low-budget scenario, we can evaluate the
impact that pure exploitation has. Since QBC needs an initial set to train the
model (in our case an RF with the same hyperparameters as for the evaluation),
we provide it with the same initial three data points as our method LQBAL,
which are sampled cluster-based (iIRDM).

The results for the classification setting can be found in Table [d As shown,
GSx rarely outperforms the baseline RS for both Fl-score and classes found.
All other methods, however, achieve results that are at least equal to and often
better than RS on all datasets, except QBC on the Segmentation dataset. The
cluster-based methods iRMD and TypiClust provide similar results, with Typi-
Clust performing slightly better in terms of both the F1l-score and the number of
classes identified. TypiClust also is the best method on four datasets (F1-score)
with the Iris dataset being a tie. Both are the best for one dataset in finding the
most classes on averageﬂ Surprisingly, QBC performs also well with being the
best on three datasets (F1-score), although all three results are ties. Additionally,
it is only slightly better than the baseline RS in percentage of classes found. Our
method LQBAL is best on three datasets, again all being ties, but it is able to
find the most classes on two datasets. The mean values demonstrate how well the
AL methods generally perform: TypiClust and LQBAL perform best with equal
Fl-scores. Although iRDM has a slightly lower F1 score, it identifies the same
proportion of classes as the aforementioned methods. QBC is the fourth-best
method and RS and GSx are the two worst.

The results for regression are shown in Table[5] They show a different picture
than for classification which is mostly shown by the fact that no AL method
is able to consistently outperform the RS baseline, with the exception of our
method LQBAL. Another difference lies in performance, with ties being common
in classification tasks and multiple methods often achieving similar results. In
contrast, regression tasks often demonstrate performance differences of 0.2 or
more, as demonstrated by the Yacht Hydrodynamics dataset. The methods GSx,
iRDM, TypiClust and QBC perform similar on average. All are outperformed
on four out of six datasets by RS, with the datasets Airfoil and Boston Housing
being the ones where none of those methods achieves an improvement over the
baseline. TypiClust performs really well on the Real Estate Valuation and Slump
Strength set, which compensate for its very poor performance on the Yacht

® We do not mention the Iris and Wheat dataset in the analysis of percentage of classes
found here and in the following, because all methods perform equally perfect in this
regard.
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Table 4. Results for classification (F1-score and percentage of classes found) averaged
over 100 runs. Best result marked in bold.

73) 0.52 (0.93) 0.53 (0.87) 0.41 (0.77) 0.45 (0.86)
92) 0.61 (0.95) 0.67 (0.96) 0.53 (0.92) 0.65 (0.98)
8

Dataset RS GSx iRDM TypiClust QBC LQBAL
Fish 0.49 (0.81) 0.45 (0.74) 0.52 (0.8) 0.49 (0.78) 0.59 (0.85) 0.59 (0.87)
Glass 0.34 (0.78) 0.34 (0.84) 0.39 (0.84) 0.45 (0.9) 0.39 (0.78) 0.37 (0.8)
Tris 092 (1) 0.94(1) 093(1) 0.94(1) 0.94(1) 0.94 (1)

0.

0.

Segment. 0.56 ) 0.56
Wheat 0.87 (1) 0.87

Mean 0.60 (0.88) 0.58

) 0.88(1) 0.88 (1) 0.89(1) 0.89 (1)
0.87) 0.64 (0.92) 0.66 (0.92) 0.62 (0.89) 0.66 (0.92)

( (
( (
(1 (
Pendigit 0.40 (0.79) 0.33 (
(0.91 (
(1 (1
( (

Hydrodynamics dataset, where QBC is able to be the best method. Importantly,
while all other methods have at least one dataset with a very poor performancdﬂ
our method is able to perform best or relatively close to the best (one exception:
Yacht Hydrodynamics), which is also shown by the best average result among
all active learners. In terms of the average ranks, significantly LQBAL obtained
the best results.

Table 5. Results for regression (R2-Score) averaged over 100 runs. Best result marked
in bold.

Dataset RS GSx iRDM TypiClust QBC LQBAL
Airfoil Self-Noise 0.145(2) 0.126(3) 0.101(4) 0.048(5) -0.029(6) 0.163(1)
Boston Housing 0.488(2) 0.376(6) 0.45(5) 0.475(4) 0.476(3) 0.586(1)
Real Estate Valuation 0.442(4) 0.333(6) 0.441(5) 0.567(1) 0.501(2) 0.466(3)
Slump Strength 0.23(5) 0.294(3) 0.281(4) 0.313(1) 0.191(6) 0.295(2)
Superconductivity ~ 0.444(2) 0.125(4) 0.053(6) 0.415(3) 0.102(5) 0.48(1)
Yacht Hydrodynamics 0.783(4) 0.851(2) 0.791(3) 0.352(6) 0.854(1) 0.69(5)
Mean (AvRks.) 0.42(3.2) 0.35(4.0) 0.35(4.5) 0.36(3.3) 0.35(3.8) 0.45(2.2)

5 Discussion and Future Work

In this work, we present a novel active learning (AL) method tailored for sce-
narios with a very low query budget. Applicable to both regression and classifi-
cation datasets, our method comprises two phases that combine model-free and
model-based criteria to consistently produce high-quality datasets. While other
methods are also applicable to regression and classification, to the best of our

5 GSx and iRDM: Superconductivity, TpyiClust: Yacht Hydrodynamics, QBC: Airfoil
and Superconductivity
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knowledge, none explicitly investigate the distinctions between these settings.
To address this gap, we introduced a hyperparameter that defines the transition
between phases and estimated values that are generally appropriate for both
classification and regression.

On average, our method (LQBAL) outperforms other commonly used meth-
ods in low-budget scenarios, such as the initialisation process, for regression and
matches the performance of the best methods for classification. We now use our
experimental results to address the two RQs formulated in the introduction:
RQ1: Does the inclusion of model-based AL criteria help in small data, low-
budget scenarios? If yes, at which point should the inclusion happen?

— Yes, incorporating model-based criteria is advantageous. For classification,
although our method does not significantly outperform existing methods,
our hyperparameter analysis indicates that an early exploitation phase out-
performs a later, shorter one. For regression, the results indicate that model-
based criteria is critical to consistently improve on the RS baseline. Interest-
ingly, the optimal transition point to the model-based phase varies slightly:
around 30% of the budget for classification and 50% for regression. We hy-
pothesize that classification problems are often easier to model, as a single
sample per class may suffice to provide acceptable results, particularly when
classes are well-clustered. In contrast, regression outputs fluctuate more,
making them harder to model with limited data. This aligns with the re-
sults of [3], who suggest delaying model-based criteria until the model is
sufficiently fitted to the problem.

RQ2: Which types of AL criteria (e.g. cluster-, distance-based) are generally
important to consider for a high-quality, low-budget AL method?

— For classification, TypiClust and LQBAL perform best, highlighting the
value of density-based AL criteria. The method iRDM also performs equally
well in the covered classes found, this shows the importance of clustering
in the classification setting. Model-based criteria, as evidenced by the unex-
pectedly solid performance of QBC, provide important information, whereas
distance-based criteria, as used in GSx, alone provide no advantage. How-
ever, the top three methods all use distance measures to prevent redundant
sampling, so its inclusion in this way is helpful. For regression, all methods
except LQBAL are worse than RS on average, emphasizing the necessity of
combining model-free and model-based criteria. Further investigation into
whether cluster-, distance- or density-based criteria are more helpful may
be speculative due to the minor differences, but TypiClust and iRDM again
slightly outperform the others, indicating that cluster- and density-based
criteria are valuable. QBC and GSx are the two worst methods, implying
that distance- and model-based criteria are only effective when paired with
other approaches.

For future work, we plan to investigate methods to automatically determine
the switching point s, to make the performance less dependent on this hyperpa-
rameter choice. Additionally, we want to investigate the quality of the compared
methods when they are not used for the whole AL process with limited bud-
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get but for creating the initial set for other more advanced AL methods. This
addresses the cold-start problem which is often ignored or overseen in the devel-
opment of new AL methods.

Acknowledgments. This work was funded by the project SAIL: SustAlnable Life
cycle of Intelligent Socio Technical Systems (Grant ID NW21-059B), which is funded by
the Ministry of Culture and Science of the State of North Rhine-Westphalia, Germany.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

10.

11.

Attenberg, J., Provost, F.: Inactive learning? difficulties employing active learning
in practice. ACM SIGKDD Explorations Newsletter 12, 36-41 (3 2011). https:
//doi.org/10.1145/1964897.1964906

. Fourcaud, T., Zhang, X., Stokes, A., Lambers, H., Koérner, C.: Plant growth mod-

elling and applications: The increasing importance of plant architecture in growth
models. Annals of Botany 101(8), 1053-1063 (04 2008). https://doi.org/10.
1093/a0b/mcn050

Hacohen, G., Dekel, A., Weinshall, D.: Active learning on a budget: Opposite
strategies suit high and low budgets. In: Proceedings of the 39th International
Conference on Machine Learning. vol. 162, pp. 8175-8195. PMLR (7 2022). https:
//doi.org/10.48550/arXiv.2202.02794

He, D., Yu, H., Wang, G., Li, J.: A two-stage clustering-based cold-start method
for active learning. Intelligent Data Analysis 25(5), 1169-1185 (2021)

Jaster, B., Kohlhase, M.: Active learning for regression problems with ensemble
methods. In: Proceedings - 33. Workshop Computational Intelligence. pp. 9-29.
Karlsruher Institut fiir Technologie (KIT) (11 2023). https://doi.org/10.5445/
KSP/1000162754

Jose, A., de Mendonga, J.P.A., Devijver, E., Jakse, N., Monbet, V., Poloni, R.:
Regression tree-based active learning. Data Mining and Knowledge Discovery (8
2023). https://doi.org/10.1007/s10618-023-00951-7

Kelly, M., Longjohn, R., Nottingham, K.: The UCI machine learning repository,
https://archive.ics.uci.edu

Kumar, P., Gupta, A.: Active learning query strategies for classification, regression,
and clustering: a survey. Journal of Computer Science and Technology 35, 913-945
(2020). https://doi.org/10.1007/511390-020-9487-4

Lewis, D.D., Gale, W.A.: A Sequential Algorithm for Training Text Classifiers, pp.
3-12. Springer London (1994). https://doi.org/10.1007/978-1-4471-2099-5_1
Liu, Z., Jiang, X., Luo, H., Fang, W., Liu, J., Wu, D.: Pool-based unsuper-
vised active learning for regression using iterative representativeness-diversity
maximization (irdm). Pattern Recognition Letters 142, 11-19 (2 2021). https:
//doi.org/10.1016/j.patrec.2020.11.019

MacQueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1: Statistics. vol. 5, pp. 281-298. University of California
press (1967)


https://doi.org/10.1145/1964897.1964906
https://doi.org/10.1145/1964897.1964906
https://doi.org/10.1145/1964897.1964906
https://doi.org/10.1145/1964897.1964906
https://doi.org/10.1093/aob/mcn050
https://doi.org/10.1093/aob/mcn050
https://doi.org/10.1093/aob/mcn050
https://doi.org/10.1093/aob/mcn050
https://doi.org/10.48550/arXiv.2202.02794
https://doi.org/10.48550/arXiv.2202.02794
https://doi.org/10.48550/arXiv.2202.02794
https://doi.org/10.48550/arXiv.2202.02794
https://doi.org/10.5445/KSP/1000162754
https://doi.org/10.5445/KSP/1000162754
https://doi.org/10.5445/KSP/1000162754
https://doi.org/10.5445/KSP/1000162754
https://doi.org/10.1007/s10618-023-00951-7
https://doi.org/10.1007/s10618-023-00951-7
https://archive.ics.uci.edu
https://doi.org/10.1007/s11390-020-9487-4
https://doi.org/10.1007/s11390-020-9487-4
https://doi.org/10.1007/978-1-4471-2099-5_1
https://doi.org/10.1007/978-1-4471-2099-5_1
https://doi.org/10.1016/j.patrec.2020.11.019
https://doi.org/10.1016/j.patrec.2020.11.019
https://doi.org/10.1016/j.patrec.2020.11.019
https://doi.org/10.1016/j.patrec.2020.11.019

16

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

B. Jaster et al.

Rezazadeh, F., Abrishambaf, A., Diirrbaum, A., Zimmermann, G., Kroll, A.: Holis-
tic modeling of ultra-high performance concrete production process: Synergizing
mix design, fresh concrete properties, and curing conditions. In: Proceedings - 33.
Workshop Computational Intelligence. pp. 215-238. Karlsruher Institut fiir Tech-
nologie (KIT) (11 2023). https://doi.org/10.5445/KSP/1000162754

Riis, C., Antunes, F., Boe, F., Carlos, H., Azevedo, L., Pereira, F.C.: Bayesian
active learning with fully bayesian gaussian processes. In: Advances in Neural In-
formation Processing Systems. pp. 12141-12153. Curran Associates, Inc. (2022)
Roy, N., McCallum, A.: Toward optimal active learning through sampling estima-
tion of error reduction. In: ICML. vol. 1, p. 5. Citeseer (2001)

Schéne, M., Jaster, B., Biiltemeier, J., Kosters, J., Holst, C.A., Kohlhase, M.:
Pool-based active learning with decision trees: Incorporate the tree structure to
explore and exploit. In: 2025 IEEE Symposium on Trustworthy, Explainable and
Responsible Computational Intelligence (CITREx). pp. 1-9. IEEE (3 2025). https:
//doi.org/10.1109/CITREx64975.2025.10974940

Settles, B.: Active learning literature survey. Computer Sciences Technical Re-
port 1648, University of Wisconsin-Madison Department of Computer Sciences
(2009)

Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings of
the fifth annual workshop on Computational learning theory. pp. 287-294 (1992)
Sharma, M., Bilgic, M.: Evidence-based uncertainty sampling for active learning.
Data Mining and Knowledge Discovery 31, 164-202 (2017)

Shui, C., Zhou, F., Gagné, C., Wang, B.: Deep active learning: Unified and prin-
cipled method for query and training. In: Proceedings of the 23rd International
Conference on Artificial Intelligence and Statistics. pp. 1308-1318. PMLR (2020),
https://proceedings.mlr.press/v108/shui20a.html

Tharwat, A.: Principal component analysis-a tutorial. International Journal of Ap-
plied Pattern Recognition 3(3), 197-240 (2016)

Tharwat, A., Schenck, W.: Balancing exploration and exploitation: A novel active
learner for imbalanced data. Knowledge-Based Systems 210, 106500 (12 2020).
https://doi.org/10.1016/j.knosys.2020.106500

Tharwat, A., Schenck, W.: A survey on active learning: State-of-the-art, practical
challenges and research directions. Mathematics 11, 820 (2 2023). https://doi.
org/10.3390/math11040820

Tharwat, A., Schenck, W.: A survey on active learning: state-of-the-art, practical
challenges and research directions. Mathematics 11(4), 820 (2023)

Tharwat, A., Schenck, W.: Using methods from dimensionality reduction for ac-
tive learning with low query budget. IEEE Transactions on Knowledge and Data
Engineering 36(8), 4317-4330 (2024)

Wang, M., Min, F., Zhang, Z.H., Wu, Y.X.: Active learning through density clus-
tering. Expert systems with applications 85, 305-317 (2017)

Wu, D., Lin, C.T., Huang, J.: Active learning for regression using greedy sam-
pling. Information Sciences 474, 90-105 (2019). https://doi.org/10.1016/j.
ins.2018.09.060

Yu, K., Bi, J., Tresp, V.: Active learning via transductive experimental design. In:
Proceedings of the 23rd international conference on Machine learning. pp. 1081-
1088 (2006)

Zhao, Z., Jiang, Y., Chen, Y.: Direct acquisition optimization for low-budget active
learning. arXiv preprint arXiv:2402.06045 (2024)


https://doi.org/10.5445/KSP/1000162754
https://doi.org/10.5445/KSP/1000162754
https://doi.org/10.1109/CITREx64975.2025.10974940
https://doi.org/10.1109/CITREx64975.2025.10974940
https://doi.org/10.1109/CITREx64975.2025.10974940
https://doi.org/10.1109/CITREx64975.2025.10974940
https://proceedings.mlr.press/v108/shui20a.html
https://doi.org/10.1016/j.knosys.2020.106500
https://doi.org/10.1016/j.knosys.2020.106500
https://doi.org/10.3390/math11040820
https://doi.org/10.3390/math11040820
https://doi.org/10.3390/math11040820
https://doi.org/10.3390/math11040820
https://doi.org/10.1016/j.ins.2018.09.060
https://doi.org/10.1016/j.ins.2018.09.060
https://doi.org/10.1016/j.ins.2018.09.060
https://doi.org/10.1016/j.ins.2018.09.060

	 Low Query Budget Active Learning for Classification and Regression 

