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Abstract

Active Learning (AL) is a strategy designed to reduce annotation costs by allowing models to select the most
informative samples from an unlabeled dataset, particularly in tasks like image classification. Integrated within
the broader Human-in-the-Loop (HITL) framework, AL creates an interactive process where human annotators
play a role in labeling data. However, this interaction introduces variability in annotation quality, since annotators
may differ in domain knowledge, experience, and reliability. Traditional AL approaches often overlook these
differences, assuming constant performance across all annotators. This assumption can lead to suboptimal model
updates, especially when labels come from less reliable sources. To tackle this limitation, this work proposes a
reputation-based framework that captures annotator performance over time and across domains. Reputation
scores are computed based on past annotation accuracy and feedback from other annotators, and these scores are
then used to weigh individual contributions through a voting mechanism. In addition, the study explores how
annotator expertise and oracle size influence the effectiveness of this approach, evaluating their impact on model
performance in controlled, simulated settings with imperfect annotators.
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1. Introduction

The development of machine learning (ML) models often depends on the availability of large volumes of
labeled data. Yet, in many real-world scenarios, collecting these labels is far from trivial, it’s expensive,
time-consuming, and often demands specialized human expertise. In response to these limitations,
R. Munro [1] describes Human-in-the-Loop (HITL) learning as an alternative that allows human
knowledge to be integrated into the model training process. One of the most widely adopted strategies
within this paradigm is Active Learning (AL), where the model chooses which examples to label based
on uncertainty, aiming to reduce annotation effort while still improving performance. In AL, the source
of labels, typically a human or group of human annotators, is commonly referred to as an oracle. Its
effectiveness can suffer in settings where the oracle is imperfect, which is, in fact, the norm rather than
the exception in most practical situations. Many traditional approaches treat all members of the oracle
as if they were equally reliable, ignoring the variability in human expertise. This can be problematic
when some annotators are systematically wrong or inconsistent, and the model ends up learning from
noisy or misleading inputs. In such cases, the challenge lies not only in selecting the right example to
label, but also in deciding who within the oracle should be trusted with the task.

This work takes a closer look at how to make the annotation process in AL more robust in
the face of these imperfections. To do so, its proposed a reputation-based mechanism that estimates
how reliable each annotator is over time, and uses this information to guide both which examples are
selected for annotation and how the final labels are aggregated. More specifically, this study is guided
by three central questions: first, how can we define and integrate reputation into AL in a way that
reflects real annotator behavior? Second, can such a reputation-aware strategy actually improve the
quality of the models we train? And third, how do factors like annotator expertise and the number of
annotators involved influence the overall performance of this method?
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2. Related Work

2.1. Human-in-the-Loop Learning

The concept of HITL, as introduced by R. Munro [1], refers to methodologies that incorporate human
input into the design, training, and operation of Al systems. The premise is that the collaboration
between human and machine intelligence can achieve results unattainable by either entity alone. In
this paradigm, human agents intervene when automated systems encounter ambiguous or unresolved
problems, creating a continuous feedback loop through which the system can iteratively improve its
performance [2, 3, 4].

As noted by Wu et al. [2] and Chai et al. [3], human involvement can be incorporated at mul-
tiple stages of the model development lifecycle. In the data preprocessing phase, which includes tasks
such as data extraction, integration, and cleaning, human agents can define extraction heuristics,
resolve entity ambiguities, and validate corrections to ensure the consistency of the data and integrity.
Afterward, during dataset construction, labeling becomes an important and resource intensive step [4, 1].
By giving priority to the annotation of the most informative examples, human annotators enhance the
model performance through a process of iterative refinements known as data annotation [2, 3]. During
the model training and inference phases, humans can contribute by resolving uncertain classifications,
validating predictions, and refining decision boundaries.

Nevertheless, as mentioned by Munro [1], erroneous human annotations can significantly de-
grade model accuracy and, large scale annotation tasks can be costly and time consuming, given the
slowness and limited scalability of human labor relative to automated processes [4].

2.2. Active Learning

AL is a branch of ML and it is also known as query learning. This method is based on the principle that
a learning algorithm can actively choose the data, from which it learns, as described by B. Settles [5]
and R. Munro [1]. For a traditional ML system to operate effectively, it typically requires hundreds
or even thousands of labeled data points. AL can minimize this requirement by iteratively selecting
the most informative samples from a pool of unlabeled data, Y = {x1,z2,..., %y, }, where each x;
is a data point from the feature space X. The selection is performed according to a given scenario,
S = {s1,s9,...,8,}, which defines how the selection and annotation process is carried out during
training. The goal is to acquire the corresponding labels y; for selected x;, where y; € } and ) denotes
the label space.

The selection of samples to be labeled (i.e., assigned a target value y;) is guided by query
strategies, @ = {q1, 42, - - . , @n }, which estimate the utility of each instance based on criteria such as
uncertainty, representativeness, or diversity. The selected instances are then submitted to a set of
annotators, A = {ay,as, ..., an}, which can consist of humans, machines, or a combination of both,
and are responsible for assigning the appropriate y; values. The labeled instances (z;, y;) are added
to the labeled dataset, £ = {(x1,y1), ..., (Zn,, Yn,) }» which is used to train the predictive model, or
learner, represented by a function h that learns patterns in L.

As mentioned previously, one of the main advantages of AL is that it reduces the number of
labeled instances required to train the learner h. This is achieved by selecting the most informative
examples from the unlabeled pool U/, thereby avoiding redundant labeling and improving the efficiency
of the labeled set £ [5]. This process is particularly relevant in contexts where labeled data is limited or
costly to acquire, such as in medical imaging and natural language processing [1]. Besides, AL can
accelerate the convergence of h by enabling it to reach a decent performance with fewer training
iterations [6]. When integrated into HITL systems, the selection process enables the incorporation of
human expertise from the annotator set (| A|), contributing to the system’s adaptability and stability [4].




Despite these benefits, one issue is its sensitivity to noise and outliers since selection mechanisms
based on query strategies may give prioriority to mislabeled or unrepresentative instances, negatively
affecting the quality of £ and the performance of h [5]. Besides, the effectiveness of AL is dependent
on the choice of ¢; € @, which may not generalize across different tasks or datasets [1]. From a
computational perspective, repeatedly retraining h and continuously evaluating utility over {/ can be
costly. And lastly, instances labeled through this process may not transfer effectively to other models or
learning scenarios [6].

2.2.1. Scenarios

According to B. Settles [5], there are three main scenarios in which an AL system can query instances
from the U: pool-based, stream-based, and membership query synthesis.

On the first hand, in the pool-based scenario, a set of the most informative instances is se-
lected from U based on a model trained on L. These selected instances are then sent to a group of
annotators for labeling. Once labeled, they are added to £, and the model is retrained to improve its
performance. Although widely used, this approach can be computationally demanding due to the
repeated evaluation of a large number of candidates [7]. On the other hand, in the stream-based scenario,
B. Settles [5] states that obtaining an instance from ¢/ must be assumed to be free or inexpensive,
allowing it to be drawn from the data distribution before h decides whether to request its label. This
method is also known as sequential AL because instances from U/ are retrieved one at a time. Lastly, in
the membership query synthesis scenario, the learner h can request labels for any instance in the input
space, including synthetically generated queries rather than those sampled from the distribution. This
method is effective for finite problem domains and does not require processing U/, as h can quickly
generate new query instances. However, a major limitation is that, in some cases, it can create instances
that are difficult or impossible for an annotator in A to understand and label correctly [7].

2.2.2. Query Strategies

Query strategies define how an AL system selects which instances to label, based on a utility function
applied to the U [1, 5]. These strategies are generally divided into two categories: information-based,
which prioritize uncertain instances near the model’s decision boundary, and representation-based,
which aim to select instances that best reflect the structure of the data distribution [7].

As for information-based [7], Uncertainty Sampling [1, 5] selects the samples for which the
model h is least confident. This strategy includes three main methods: first, Least Confidence, which
selects instances with the lowest predicted probability for the most likely class; second, Margin
Sampling, which focuses on the smallest difference between the top two class probabilities; and third,
Entropy Sampling, which considers the overall uncertainty across all class probabilities. Furthermore,
Query-by-Committee [5] selects instances that lead to the highest disagreement among a group of
models (the committee). In this case, disagreement is often quantified using vote entropy. Finally,
Expected Model Change selects instances that would lead to the greatest change in the model if labeled.
One example of this is the Expected Gradient Length, where the expected magnitude of the gradient
update is used as a selection criterion [3, 8].

In contrast, representation-based strategies [7] focus on selecting instances that best reflect
the structure of the input space. For example, Density Sampling [1] selects instances from high-density
regions, using similarity measures such as the distance between feature vectors, with the goal of
querying representative points. Additionally, Diversity Sampling gives priority to instances that
maximize the coverage of the feature space, aiming to reduce redundancy by selecting diverse samples
relative to the L set [1]. Lastly, Cluster-Based strategies partition the data into clusters and select the
instances closest to the cluster centers [1].



Finally, it is also important to mention the Random query strategy, which selects unlabeled in-
stances entirely at random, without considering information from the data distribution or model
predictions. This strategy serves purely as a baseline for evaluating other query methods [1, 5].

2.3. Trust and Reputation
2.3.1. Trust

Trust (hereafter represented as 7), is a concept that has been studied extensively in various fields,
leading to multiple definitions. S. Marsh [9], author of the Marsh T model, and M. Deutsch [10]
describe T as a common social phenomenon. According to them, trusting behaviour arises when an
individual faces an uncertain decision path, the outcome of which can be either positive or negative
and depends on the actions of another individual. If the negative outcome is potentially more harmful
than the positive outcome and the individual still chooses to proceed, this is considered a trusting
decision. If not, the individual is said to be acting with distrust. Moreover, in groups composed of many
individuals, situations often arise that require cooperation in order to achieve common goals. Such
cooperation typically depends on 7, which can be established either explicitly, through agreements, or
implicitly, through observation of behaviour over time [11, 12]. To complement this, Hoelz et al. [13]
and J. Sabater et al. [11] add that 7 is crucial for meaningful social interactions within multi-agent
systems. They define it as the quantified belief held by a trustor about the qualities of a trustee, such
as competence, commitment, honesty, security, and dependability, evaluated in the context of the
interaction.

A. Josang et al. [14], building on the ideas of S. Marsh [9], define 7 as a willingness to rely
on another entity in a particular context, despite the potential for negative outcomes, driven by a sense
of relative security. I. Pinyol et al. [15] see it as a process of practical reasoning that ultimately leads to
a decision to engage with another entity.

In addition, a study by F. Mafizoglu et al. [16] identifies and examines factors that influence
T between entities, which can be humans, artificial agents, or both. They argue that 7 is inherently
relational and applies to human-to-human, agent-to-agent, and human-to-agent interactions. In
their research, they identified factors that are relevant to both humans and artificial agents. First,
common factors include characteristics that the entities share, such as task performance, clarity of
communication, reliability, and transparency of actions or decisions. Second, human-specific factors
include characteristics that are unique to humans, such as age [17], personality [18], mood [19], and
personal ideologies [20]. Finally, agent-specific factors are those that evaluate the trustworthiness
of agents based on their hardware architecture, type of agent, technical precision, defection [21],
cooperativeness, and deception [22], since artificial agents do not possess emotions.

2.3.2. Reputation

J. Sabater et al. [12, 11], T. Huynh [23], and A. Jesang et al. [14] agree that reputation, R, is constructed
from observations about an individual’s past behaviour. This means that, in order to build a measure
of R, a particular individual needs to consult other individuals in a community to gather their
observations about the current individual being evaluated. These observations are usually in the form
of ratings that individuals give to one another after an interaction. Once collected and aggregated,
these ratings can be used to represent the R of an individual.

T. Huynh [23] further adds that R and 7 in each interaction have a close relationship, be-
cause the 7 that an individual A places in B after an interaction is reflected by the rating provided by
A. Since the R of an individual is built based on the ratings given by others, it can be said that the R
of an individual B is constructed from the interaction 7T it receives from others in the community,



even when those ratings may be imperfect. Furthermore, R serves as a decision-making mechanism
when an individual A lacks sufficient knowledge or experience with B, using the R of B as a proxy for
reliability, as discussed by I. Pinyol [15] and J. Sabater et al. [11]. Expanding on this concept, the FIRE
model proposed by T. Huynh [23] adds more complexity to the idea of R. For example, the author
introduces the concept of witness R, which is constructed from reports provided by third parties
regarding an individual’s behaviour, and the concept of certified R, which is obtained from provable
references presented by the individual itself.

2.3.3. Classification Dimensions

T and R are complex concepts, applied across diverse contexts, which makes their classification a
difficult task. Therefore, as noted by J. Sabater et al. [11], it is essential to classify the dimensions that
these concepts could extend to.

The authors [11] describe that 7 and R can be modeled in two distinct ways. As cognitive
models, introduced by B. Esfandiari et al. [24] in 2001, which conceptualize 7 or R as merely beliefs,
and understood as functions that represent a level of confidence in an entity or individual. Or, as
game-theoretical models, which interpret them as probabilities that reflect one’s expectations about
another’s actions, similar to Bayesian networks, as presented by D. Gambetta [25] in 1988.

Moreover, 7 and R are context-dependent variables [11], meaning that the level of 7 or R
attributed to an individual can vary according to the situation. For example, trusting a doctor to
recommend medication does not imply the same level of 7 when the same doctor suggests a bottle of
wine. With this example, the authors distinguish between two types of context variables: single-context,
which assign a single 7 or R value to each partner regardless of the situation, and multi-context, which
maintain separate values for each context or, in other words, domain.

2.4. Imperfect Annotators

Traditional AL algorithms assume labeling oracles, or more precisely, annotators, to be infallible,
always providing correct labels. However, this is an assumption that often fails in real-world scenarios,
where annotators may offer labels of various types of qualities, as noted by S. Chakraborty [26].
One the first hand, the performance of human annotators depends on various factors, including
expertise, experience, concentration, interest, and fatigue [27]. On the other hand, labels derived
from simulations or test stands are subject to uncertainty due to imperfections, sensor noise, or
transmission errors [28]. Additionally, the accuracy of the oracles answers can depend on how difficult
the labeling task is since for simpler classification problems, oracles are more likely to give correct
labels. As the task becomes more complex, it is more likely that oracles will be uncertain about
their responses, and here, the term uncertainty is used as defined by Motro et al. [29], and refers to
situations where the answer may be unlikely, unclear, unreliable, inconsistent, or hard to define precisely.

Urner et al, in their research [30], provide a good example of this topic since they discussed
that certain datasets require labeling by top human experts, which can be both complex and costly. For
instance, classifying brain tumors from CT scans as benign or malignant falls under this category. As a
more cost-effective alternative, medical students could label these images, as they are more available
and less expensive to employ. However, it’s important to note that the labels provided by students may
be inaccurate, especially for images that are difficult to classify.

Besides, Yan et al. [31] mention that when working with multiple annotators, the challenge is
not just to pick the most informative sample to label, but also to choose the right annotator to label it.
This adds a new dimension to AL because, some annotators can be more reliable than others, may
behave maliciously, or have different levels of expertise depending on the domain.



Another important aspect raised by same authors [31] concerns the allocation of annotators
when dealing with multiple unreliable sources. The authors propose an alternative method by
simulating synthetic annotators, and rather than relying on human input, each synthetic annotator is
modeled probabilistically through a confusion matrix. For instance, an annotator may correctly label
class A 90% of the time while misclassifying it as class B in the remaining 10%. By drawing labels
according to these distributions, the model is able to reproduce annotators with different levels of
knowledge in each domain.

3. Methodology

In order to address the research questions stated, this study proposes a framework that takes into
account evaluation metrics, paying particular attention to R. The framework consists of a cycle of
AL organised around five elements: the learner, which represents the model h; the data D, which is
composed of £ and U; the query strategy; the scenario; and the oracle A. Building upon this structure,
the study considers only a single learner, initially trained on a small portion of £. The learner operates
in a pool-based selective sampling scenario, where at each iteration it has access to the entire I/ and
selects a small pool of the most informative instances to query from the oracle A. Here, informativeness
is measured using the least confidence query strategy, which selects the instance for which h has the
lowest predicted confidence in its most likely .

Then, a weighted voting system is applied, where each annotator contributes to the final deci-
sion proportionally to their individual R within a specific domain. As a result, the oracle A, which
consists of multiple simulated annotators, assigns a label y to each queried instance based on the
aggregated votes. Once labeled, the instance is added to the £, and the model h is updated accordingly.
This cycle is repeated iteratively; that is, new samples are queried, labeled, and used to retrain A until
a stopping condition is reached, such as a maximum number of queries. In what follows, the next
sections provide an detailed explanation of each step involved in this process.

3.1. Synthetic Annotators

To simulate imperfect annotators, one could consider training them on existing datasets. However, this
approach would significantly reduce the amount of data available for training, testing, and validating
the model h. Even with access to large datasets containing diverse annotations, training a statistically
significant number of annotators would be time-consuming. To overcome these limitations, its possible
to simulate synthetic annotators using the strategy proposed by Yan et al. [31]. Following their method,
each annotator a; € A is modeled probabilistically by generating a confusion matrix 7%, where each
row is sampled from a dirichlet distribution.

Consider a classification task with K = 3 classes, JV = {0,1,2}. For annotator a;, we define
the confusion matrix 7% € RX*K where each row 7% corresponds to the true class ¢ € ) and
represents a probability distribution over the predicted labels £ € ). Each row is generated as:

7ot ~ Dirichlet(a.) (1)

Here, o = [, Oy, Qic,| is the dirichlet concentration vector for true class ¢, where each a,
corresponds to the concentration parameter for predicting class k£ when the true class is c. Assigning a
higher value to a. . (i.e., the diagonal element of the concentration vector) increases the probability
that the annotator labels an instance of class c correctly. For instance, the resulting confusion matrix
7% might be:



0.85 0.10 0.05
7% = [0.20 0.70 0.10 2)
0.10 0.25 0.65

In this example, annotator «; is particularly accurate in labeling instances of class 0 compared to classes 1
and 2, suggesting a stronger familiarity with that class. However, this does not necessarily imply domain
expertise in a semantic sense. One could argue that an expert annotator should also recognize hierar-
chical subtypes (e.g., if the parent class is tree, the expert should identify subtypes like oak, palm, or pine).

Besides, by adjusting a, it is possible to simulate different levels of annotator domain knowl-
edge. Following the ideas of Hannah et al. [32], to control the expected accuracy acc; of an annotator
in their expert class ¢, we rely on the property that the expected value of the Dirichlet-distributed
probability for class k is:
a; 1 __ Qe k
Bl = Sr=1 )
k)IIO ac7k,

Given a total of K classes and a target expected accuracy acc; for the expert class ¢, we set the
concentration parameter for the correct label £ = c as:

(K —1)-ace
1 —ace

(4)

Qe c =

)

The remaining K — 1 classes receive a base concentration of 1.0. The resulting Dirichlet vector o is
then defined as:

c,c if k =
Qe = {O‘ e DR 5)

1.0 otherwise

In addition to the expected accuracy, it is important to note that setting a desired expected value
does not deterministically fix the sampled outcome. Due to the stochastic nature of the Dirichlet
process, there exists a variance around the expected value, which reflects the uncertainty inherent to
each sampled probability vector [33]. This variability is quantified by the variance of the Dirichlet
distribution, which is given by:

ac,c(ao - ac,c)

Varlp] = ad(ap+1)

(6)

where o . is the concentration parameter associated with the correct class index c and g = ZJK:Bl O j

is the total concentration for the Dirichlet distribution associated with class c.

3.2. Trust

Any definition of 7 stated in the last sections can be used in the context of AL, but because there
are so many variables and conditions involved, some of them may add extra complexity. Therefore,
without implementing Marsh’s complete 7 model, this work accepts the general definition of 7
proposed by S. Marsh [9] and later extended by A. Josang et al. [14]. In the context of AL, T
is relevant because the learner h relies on the oracle A to provide accurate labels for uncertain
samples. For this reason, 7T is simply defined in this study as the willingness to rely on an entity
despite potential consequences. Therefore, 7 is understood as the learner’s belief that the ora-
cle will provide trustworthy annotations, regardless of its errors. However, since annotators only



assign labels and evaluate each other’s annotations, 7 is not extended to other components of the system.

Other perspectives that take social aspects into account when modelling 7 include those of J.
Sabater [11] and F. Mafizoglu et al. [16]. These may be relevant, but due to their complexity, they
are beyond the scope of this study. In addition, since the primary goal is to examine R, we will not
categorise this variable according to its dimensions, which include granularity, visibility, and type of
conceptual model.

3.3. Reputation

This work adopts the notion of R as defined by ]J. Sabater et al. [12, 11], and later extended by
Huynh [23] and Jgsang et al. [14]. In their view, R is understood as a collective judgment of an agent
T, formed from the evaluations provided by other members within a community.

Building on this notion, each annotator a;, in the context of AL, is assigned a reputation
value R that is updated through peer evaluations. In order for R to exist in this setting, annotators need
to rate each other after each labeling interaction. Specifically, these ratings are binary and converted
into a score S, being either good (41) or bad (4-0), depending on whether the annotators agreed on
their predicted label. For example, if annotator a; evaluates as, then a9 receives a good rating if both
provided the same label for the queried instance; otherwise, the rating is bad.

Following the multi-context scenario [11], R can be treated as a class-wise property, recogniz-
ing that annotators can exhibit levels of expertises across multiple domains. Thus, a separate reputation
value is maintained for each class. Given K classes, each annotator a; has K reputation values, one per
class ¢ € {1,2, ..., K'}. The score of annotator a; for class c at interaction step ¢ is computed as:

St 1ZN: () )
i T N2
i=1

where NN is the number of ratings received at time ¢ for class ¢, and r € {0, 1}. However, scores S;
alone can be insufficient to fully capture R, since they are based only on ratings. Therefore, it is
important to include the accuracy, Accj, of the annotators, because it allows us to incorporate ground
truth information. The reputation R; of annotator a; for class c at time ¢ is thus defined as:

R = a8 4 8. Acd®” ®)

Regarding visibility [11], R is modeled as a global property: all annotators evaluate every other peer in
the oracle and have access to each other’s reputation scores. Modeling R as a subjective property would
involve simulating scenarios where each annotator only has access to a limited amount of information
about the others.

3.4. Oracle Decision

According to Y. Qian et al. [34], individuals with higher reputations in a given domain are more likely
to provide correct answers in real-world scenarios. Building on this principle, a component of the
proposed framework involves defining the mechanism by which the oracle determines the final label to
be assigned to each queried instance. Two strategies have been proposed and studied in the literature:
majority voting and weighted voting.

Majority voting, where each annotator contributes equally to the final decision, is one com-
mon aggregation methods [35, 36, 37]. However, this method assumes that all annotators are equally
competent which is an assumption that often does not hold in practical settings. In particular, as noted



by V. Sheng et al. [38] and Y. Zhang et al. [39], the presence of low-quality or noisy annotators can in-
troduce significant label noise, negatively affecting the model’s training and generalization performance.

To solve these limitations, this study adopts a weighted voting approach, in which each anno-
tator’s vote is scaled according to their reputation score. In doing so, this allows the oracle to give more
influence to reliable annotators. Besides, weighted voting has been validated in several works that
explicitly model annotator trustworthiness over time, including D. Zhou et at. [40], P. Jin et al. [41], and
Y. Zhang et al. [42]. As a result, it is possible to improve the oracle’s ability to handle annotation noise
and operate more effectively in AL scenarios by integrating reputation-weighted voting, especially
when annotation budgets are limited and each labeled instance carries a significant impact for the
learner. In the case of ties, when two or more classes receive the same total reputation score, we adopt a
random selection strategy among the tied classes. Although one alternative could be to choose the class
with the most votes (i.e., majority count), this may inadvertently favor quantity over quality, especially
in early iterations where reputation estimates are still stabilizing [38].

4. Experimental Setup

This study evaluates a reputation-based AL strategy under three main conditions: (i) using three
different reputation configurations; (ii) varying levels of annotator expertise; and (iii) different oracle
sizes. For the first 10 classes of the MNIST [43], MNIST-Fashion [44], EMNIST-Letters [45] and CIFAR-10
[46] datasets, we explore all combinations of these three factors.

The interaction between the oracle and the learner h follows the procedure described in sec-
tion 3.4, in which the oracle selects the class whose total R, summed across all voting annotators, is the
highest. To isolate the effect of R, we control the contribution of its two components, S (peer ratings)
and Acc (past accuracy), using weighting parameters « and 3, respectively. Three configurations are
considered: (a) when oo = 1.0 and $ = 0.0, R is based only on peer ratings; (b) when both weights are
set to 0.5, the R combines S and Acc equally; and (c) when o = 0.0 and 5 = 1.0, only annotator Acc is
used to compute R.

Besides, each annotator a; is randomly assigned a single class ¢ € ) in which they are con-
sidered an expert, a designation that remains fixed throughout the experiments. Their labeling behavior
is simulated using a dirichlet distribution to generate class-conditional probability vectors, forming the
confusion matrix 7% . The dirichlet vector o is configured such that the expert class receives a higher
concentration parameter creyp, while the remaining K — 1 classes receive a base value of 2.5. The level
of expertise, Low, Medium, or High, determines the value of crexp, which is calculated using the formula
described previously, corresponding approximately to 40%, 70%, or 98% expected accuracy, acc;.

Configuration Olexp  ACCy
High Expertise 441.0 98%
Medium Expertise  21.0  70%
Low Expertise 6.0 40%

Table 1
Values of aeyp and corresponding expected accuracy for expertise levels.

The resulting dirichlet concentration matrices a € R¥*% describe the behavior of each annotator.
Each row corresponds to a true class ¢, and the elements specify the dirichlet concentration parameters
used to sample a probability distribution over the predicted labels. The matrix is constructed such
that one randomly selected class receives the expert-level concentration crex, and the others follow a
uniform pattern with base values.
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Figure 1: Concentration matrices () = 10) for different expertises.

It is also relevant to study how the number of annotators (i.e., the oracle size) affects the performance
of the reputation system. To this end, we include three oracle size configurations in the experiments:
a small oracle composed of 5 annotators, a medium oracle with 15 annotators, and a large oracle
consisting of 30 annotators. Lastly, the next table can resume all the variables and their configurations
used in the research.

Variables Configuration

Scenario Pool-Based

Query Strategy Uncertainty Sampling

Oracle Answer Weighted Reputation Voting
Reputation Configuration  Only S, Both S and Acc, Only Acc
Oracle Sizes 5,15, 30

Expertise Levels High (H), Medium (M), Low (L)

Table 2
Summary of the variables in the experiments.

4.1. Training Protocol

Training was conducted using the Adam optimizer due to its adoption in training CNNs such as LeNet-5,
where it has been shown to achieve accurate results in image classification tasks [47, 48]. Regarding
the learning rate, initial experiments tested the values 0.0001 and 0.01, which are commonly reported in
the literature for LeNet-5 training [47, 49, 50] and based on these results, a value of 0.002 was chosen.
As for the batch size, preliminary tests revealed that smaller batches did not fully utilize the available
GPU acceleration, resulting in data processing speeds comparable to CPU-bound training. Increasing
the batch size allowed for better exploitation of the GPU’s processing capabilities, with 256 as a value
that ensured a better speed in training h.

Before the start of the AL cycles, the model h was pretrained on a small labeledsubset corre-
sponding to approximately 0.3% of the training data, which is a common practice in the literature,
where initial labeled sets typically range from 0.1% to 2.5%, as reported by other authors [51, 52, 53].
Each AL cycle included exactly 10 training epochs, resulting in a total of up to 2.500 training epochs
over the 250 iterations conducted throughout the experiments. Within each iteration, sample selection
followed a pool-based strategy, in which 16 instances were selected from I/ based on the predictive
uncertainty of h. The model h was trained using the cross-entropy loss function, which measures
the discrepancy between the predicted probabilities and the true labels y; € V. This same loss was
employed to evaluate h on the validation set after each iteration, and the final performance was
calculated only at the end of the process using the test set.

Besides, each configuration was repeated 30 times, with the seed assigned according to the



run index, ranging from 0 to 29. Consequently, results are reported as the average and standard

deviation computed across the 30 independent runs in which no early stopping was applied.

5. Results

5.1. MNIST-Digits

The next tables 3, 4, and 5 show the performance metrics obtained under the three different R configu-
rations considering: only S, Acc and S, and both. As for table 6, it shows the averages of R for each

configuration and oracle size.

|A|=5 |A|=15 |A| =30
Accuracy
Baseline 0.57 £0.06 0.57 £ 0.06 0.57 £ 0.06
L 0.68 £ 0.04 0.88 +£0.02 0.96 £ 0.01
M 0.70 £ 0.05 0.92 £0.02 0.98 £0.00
H 0.71 £0.04 0.93+0.03 0.98 £0.00
Precision
Baseline 0.57 +0.06 0.57 +£0.06 0.57 +0.06
L 0.76 £ 0.03 0.89 +0.02 0.96 £ 0.01
M 0.77 £0.03 0.93£0.02 0.98 £0.00
H 0.78 £ 0.03 0.94 £0.02 0.98 £0.00
F1-score
Baseline 0.55 +0.06 0.55+0.06 0.55 +0.06
L 0.68 £ 0.04 0.88 £0.02 0.96 £ 0.01
M 0.69 £ 0.06 0.92+0.03 0.98 £0.00
H 0.70 £0.05 0.93 £0.03 0.98 £0.00
Table 3
Results for R using only S on MNIST.
|[Al=5 |A| =15 |A| =30
Accuracy
Baseline 0.57 +0.06 0.57 +£0.06 0.57 +0.06
L 0.70 £ 0.06 0.89 £ 0.03 0.96 £ 0.01
M 0.70 £ 0.05 0.88 +0.03 0.97 £ 0.02
H 0.69 £ 0.06 0.83 £0.08 0.95+0.04
Precision
Baseline 0.57 £0.06 0.57 £ 0.06 0.57 £ 0.06
L 0.77 £0.03 0.90 £0.02 0.96 £ 0.01
M 0.78 £0.03 0.90 £0.02 0.97 £ 0.01
H 0.78 £0.02 0.87 +£0.04 0.95 +0.03
F1-score
Baseline 0.55 £ 0.06 0.55+0.06 0.55+0.06
L 0.69 £ 0.07 0.88 +0.03 0.96 £ 0.01
M 0.68 £ 0.06 0.87 £0.04 0.97 £ 0.02
H 0.67 £0.06 0.81 £0.09 0.94 +0.04
Table 5

Results for R using only Acc on MNIST.

|Al=5 |A| =15 |A| =30
Accuracy
Baseline 0.57 +£0.06 0.57 £ 0.06 0.57 + 0.06
L 0.70 £ 0.05 0.89 £ 0.03 0.97 £ 0.01
M 0.71 £ 0.06 0.89 £ 0.03 0.97 £ 0.01
H 0.69 £ 0.05 0.85+0.03 0.96 = 0.02
Precision
Baseline 0.57 £0.06 0.57 +0.06 0.57 +0.06
L 0.77 £0.03 0.90 +£0.02 0.97 £ 0.01
M 0.79 £ 0.03 0.91 £0.02 0.97 £ 0.01
H 0.78 £ 0.03 0.88 £ 0.02 0.96 + 0.02
F1-score
Baseline 0.55 +0.06 0.55 +0.06 0.55 + 0.06
L 0.69 + 0.05 0.89 £ 0.03 0.97 £ 0.01
M 0.69 £ 0.06 0.89 +0.04 0.97 =+ 0.01
H 0.67 £ 0.06 0.84 £ 0.03 0.96 £ 0.03
Table 4

Results for R using S and Acc on MNIST.

|[Al=5 |A| =15 |A| =30

Only §

L 0.01 £0.00 0.01 £0.00 0.01+0.00

M 0.01 £0.00 0.01 +£0.00 0.01 +0.00

H 0.01 £0.00 0.01 +£0.00 0.01 +0.00
Both S and Acc

L 0.12+0.02 0.12+0.02 0.12 £ 0.02

M 0.13+0.02 0.13+0.02 0.13+0.02

H 0.15+0.02 0.15+0.02 0.15 £ 0.02
Only Acc

L 0.23+0.04 0.23+0.04 0.22+0.04

M 0.26 + 0.04 0.26 £ 0.04 0.25 + 0.04

H 0.29 £ 0.03 0.28 £ 0.04 0.28 £ 0.04

Table 6

Reputation scores on MNIST.



5.2. MNIST-Fashion

For MNIST-Fashion dataset, the next tables 7, 8, and 9 present the performance metrics obtained under the
three different R configurations. In contrast, Table 10 shows the average R values for each configuration
and oracle size.

|[Al=5 |A|=15 |A| =30 |Al=5 |A| =15 |A| =30
Accuracy Accuracy
Baseline 0.41+0.12 0.41+0.12 0.41 £0.12 Baseline 0.41+0.12 0.41+0.12 0.41£0.12
L 0.56 £ 0.05 0.71 £0.02 0.79 £ 0.02 L 0.60 £0.04 0.73 £0.04 0.82+0.02
M 0.59 £0.04 0.75+0.02 0.82 £ 0.01 M 0.61 £0.05 0.75+0.03 0.84 +0.02
H 0.59 £0.05 0.77 £0.03 0.84 £ 0.01 H 0.60 £0.05 0.72 £0.03 0.83 £0.04
Precision Precision
Baseline 0.42+0.12 0.42+0.12 0.42+0.12 Baseline 0.42+0.12 0.42+0.12 0.42£0.12
L 0.64 £0.04 0.75+0.02 0.82 +£0.01 L 0.65 £0.04 0.75+0.03 0.82+0.01
M 0.66 £ 0.03 0.78 £0.02 0.84 £ 0.01 M 0.67 £0.04 0.76 £ 0.02 0.84 £ 0.02
H 0.66 £ 0.03 0.80 +0.02 0.85 £ 0.01 H 0.68 £ 0.04 0.75+0.02 0.84 +0.03
F1-score F1-score
Baseline 0.38 +0.13 0.38+0.13 0.38 +0.13 Baseline 0.38+0.13 0.38+0.13 0.38 £0.13
L 0.55£0.05 0.71 £0.02 0.80 £ 0.01 L 0.57 £0.05 0.73+0.04 0.82+0.02
M 0.57 £0.04 0.76 £ 0.02 0.83 £ 0.01 M 0.58 £ 0.06 0.74 £0.04 0.83 £0.02
H 0.57 £0.06 0.78 £0.03 0.85 £ 0.01 H 0.57 £0.06 0.70 £0.03 0.83 £0.04
Table 7 Table 8
Results for R using S on MNIST-Fashion. Results for R using S and Acc on MNIST-Fashion.

|[Al=5 |A|=15 |A| =30

Accuracy |[Al=5 |A| =15 |A| =30
Baseline 0.41£0.12 0.41+0.12 0.41+0.12 Only S
L 0.59 £ 0.05 0.72+0.05 0.81+0.02 L 0.01 £0.00 001000 001+ 0.00
M 0-59:+0.06 0742003 083002 M 0.01 £0.00 0.01 +£0.00 0.01 +0.00
H 0.58 £ 0.06 0.71 £0.03 0.82+0.05 u 0.01£0.00 0.01+000 001+ 0.00

PreC|5|?n Both S and Acc
Baseline 0.42+0.12 0.42+0.12 0.42+0.12 L 012002 0124002 012+ 0.02
L 0.66 + 0.04 0.74 £0.03 0.81 £ 0.01 M 013+0.02 0134002 013+ 0.02
M 0.66 £ 0.06 0.76 £ 0.02 0.83 £ 0.02 H 0154002 0154002 015+ 0.02
H 0.66 £ 0.03 0.74 £0.02 0.82 £0.04

F1-score Only Ace

. L 0.22+£0.04 0.23+0.04 0.23 £0.04
Baseline 0.38+0.13 0.38 +£0.13 0.38+0.13 M 0064 0.04 0264004 0254 0.04
L 0-57:+0.05 0712005 081002 H 0.28 £+ 0.04 0.28 £0.04 0.28 +0.04
M 0.57 £ 0.08 0.73 £0.04 0.83+0.02
H 0.55+0.07 0.69 £0.03 0.81 £0.05 Table 10
Table 9 Reputation scores on MNIST-Fashion.

Results for R using only Acc on MNIST-Fashion.



5.3. EMNIST-Letters

The next tables 11, 12, and 13 display the performance metrics obtained under the three R configurations.
Then, table 14 shows the average R values for each configuration and oracle size.

|A|=5 |A|=15 |A| =30 |A|=5 |A]=15 |A| =30
Accuracy Accuracy
Baseline 0.27 +0.11 0.27 +0.11 0.27 + 0.11 Baseline 0.27 +0.11 0.27 +0.11 0.27 £ 0.11
L 0.49 £0.09 0.77 £ 0.05 0.90 £ 0.01 L 0.48 £0.17 0.78 £0.13 0.93 £ 0.01
M 0.50 £ 0.14 0.86 % 0.04 0.94 + 0.01 M 0.54%0.12 0.86 % 0.05 0.95 + 0.01
H 0.52 £0.15 0.90 £ 0.04 0.96 £ 0.01 H 0.50 £ 0.13 0.86 = 0.06 0.96 + 0.02
Precision Precision
Baseline 0.26 £ 0.15 0.26 + 0.15 0.26 + 0.15 Baseline 0.26 £ 0.15 0.26 + 0.15 0.26 £ 0.15
L 0.58 +0.10 0.79 % 0.04 0.91 + 0.01 L 0.56 £ 0.20 0.79 0.15 0.93 + 0.01
M 0.59 £0.17 0.87 +£0.03 0.95 £ 0.01 M 0.64 +0.13 0.87 £0.04 0.95 % 0.01
H 0.60 £ 0.17 0.91%0.03 0.96 + 0.01 H 0.61+0.18 0.87 0.05 0.96 + 0.02
F1-score F1-score
Baseline 0.22+0.14 0.22+0.14 0.22+0.14 Baseline 0.22+0.14 0.22+0.14 0.22%0.14
L 0.47 £0.11 0.77 £ 0.05 0.90 £ 0.01 L 0.45+0.19 0.77£0.15 0.93 £ 0.01
M 0.47 £ 0.16 0.86 % 0.04 0.94 + 0.01 M 0.50 £ 0.13 0.86 * 0.06 0.95 + 0.01
H 0.48 £0.17 0.90 £ 0.04 0.96 £ 0.01 H 0.46 £ 0.15 0.85+0.07 0.96 + 0.02
Table 11 Table 12
Results for R using only S on EMNIST-Letters. Results for R using both S and Acc on EMNIST-Letters.

|A|=5 |A|=15 |A|=30

Accuracy |[Al=5 |A| =15 |A| =30
Baseline 0.27 £0.11 0.27 £0.11 0.27 £ 0.11 Only S
L 0.50 £ 0.14 0.80 £ 0.04 0.93 £ 0.01 L 0.01£0.00 0.01 %000 0.01+0.00
M 0-55+0.11 0852006 095002 M 0.01 +£0.00 0.01£0.00 0.01+0.00
H 0.53+£0.10 0.85+0.06 0.95+0.03 H 0.01£0.00 0.01 000 0.070.00

PreCISl?n Both S and Acc
Baseline 0.26 +0.15 0.26 £0.15 0.26 + 0.15 L 041£002 041+002 011+ 002
L 059 0.17° 0.83 £0.02 0.3 £ 0.01 M 0.12+£0.02 0.12+0.02 0.12 £ 0.02
M 0.66 +0.13 0.86 £ 0.05 0.95+0.02 u 0144002 0144002 014+ 0.02
H 0.65+0.13 0.87 +£0.04 0.95+0.03

F1-score Only Acc

. L 0.21 £ 0.03 0.21 £0.03 0.21 +£0.04
Baseline 0.22+0.14 0.22+0.14 0.22+0.14 M 0244003 0244003 0.73+0.04
L 0.47 £ 0.16 0.80 £ 0.04 0.93 £ 0.01 H 0.26 4 0.03 0.26 £ 0.03 0.26 + 0.04
M 0.52£0.12 0.84 +0.07 0.95 £ 0.02
H 0.50 £ 0.12 0.84 £0.07 0.95+0.03 Table 14
Table 13 Reputation scores on EMNIST-Letters.

Results for R using only Acc on EMNIST-Letters.



5.4. CIFAR-10

Tables 15, 16, and 17 show the performance obtained under the three R settings. Then, table 18 shows

the average R values for each configuration and oracle size.

|[Al=5 |A| =15 |A| =30 |Al=5 |A| =15 |A| =30
Accuracy Accuracy
Baseline 0.13 +0.01 0.13+0.01 0.13 +0.01 Baseline 0.13 +£0.01 0.13+0.01 0.13 +0.01
L 0.18 £ 0.02 0.25 £ 0.02 0.31 £ 0.02 L 0.20 £ 0.02 0.27 £ 0.01 0.34 £ 0.01
M 0.19 £ 0.03 0.27 £ 0.02 0.33 £ 0.02 M 0.20 £ 0.02 0.28 £ 0.02 0.35 £ 0.02
H 0.19+0.02 0.28 £0.02 0.34 £ 0.02 H 0.21 £0.02 0.29 £0.02 0.36 £ 0.03
Precision Precision
Baseline 0.13+0.02 0.13+0.02 0.13 +0.02 Baseline 0.13+0.02 0.13+0.02 0.13 £ 0.02
L 0.22 +0.03 0.28 +0.02 0.32 +0.01 L 0.24 £ 0.02 0.30 £ 0.01 0.35 % 0.01
M 0.23+0.05 0.31 £0.02 0.36 = 0.01 M 0.25+0.02 0.32 £0.01 0.37 £0.01
H 0.24 + 0.05 0.33+0.02 0.38 £0.01 H 0.26 £ 0.02 0.34 £0.02 0.38 £ 0.02
F1-score F1-score
Baseline 0.13+£0.02 0.13+0.02 0.13 £ 0.02 Baseline 0.13+0.02 0.13+0.02 0.13 £ 0.02
L 0.16 £ 0.02 0.24 £ 0.02 0.30 + 0.02 L 0.18 £ 0.02 0.26 £ 0.01 0.33 £ 0.01
M 0.16 £ 0.04 0.26 + 0.02 0.33 £ 0.02 M 0.18 £ 0.02 0.28 +£0.02 0.35 % 0.02
H 0.15+0.03 0.27 £ 0.02 0.34 £ 0.02 H 0.18 £ 0.02 0.28 £ 0.02 0.36 £ 0.03
Table 15 Table 16

Results for R using only S on CIFAR-10.

Results for R using both S and Acc on CIFAR-10.

|[Al=5 |A|=15 |A| =30

Accuracy |Al=5 |A| =15 |A| =30

Baseline 0.13 +0.01 0.13+0.01 0.13+0.01 onlvS
n

L 0.20 £ 0.02 0.28 +0.02 0.34 % 0.01 L y 001 £ 0.00 0.01 %000 0.01 %000
M 0.21 £ 0.02 0.28 +0.02 0.35 = 0.01 M 0‘01 ; 0.00 OAOI : 0'00 0.01 : 0.00
H 0.21 £ 0.03 0.29 +0.02 0.36 = 0.02 H 0'01 ; 0.00 0'0] ; 0'00 0'01 ; 0'00

Precision

S and A
Baseline 0.13£0.02 0.13+0.02 0.13  0.02 i" e 0124002 0124002 0122 0.02
L 0.24 £ 0.02 0.30 +£0.01 0.35 % 0.01 M 0.13 ; 0‘02 0.13 ; 0.02 0.13 ; 0.02
M 0.24 £0.02 0.32+0.02 0.37 % 0.01 H 0'15 . 0'02 0'15 . 0'02 0'15 . 0'02
H 0.25+0.03 0.34+0.02 0.38 £0.02 e o e
Only Acc

F1-
score L 0.23+0.03 0.23+004 022004
Baseline 0.13 +0.02 0.13+0.02 0.13+0.02 M 0.26 £ 003 0.26+ 004 025+ 0.04
L 0.18£0.02 0.27 £0.02 0.33 +0.01 H 0'28 . 0'03 0'28 . 0'03 0'28 . 0'04
M 0.18 £0.02 0.27 +£0.02 0.35 = 0.01 S - -
H 0.18 +0.03 0.28 +0.02 0.36 + 0.03 Table 18

Table 17 Reputation scores on CIFAR-10.

Results for R using only Acc on CIFAR-10.

6. Discussion

In the MNIST dataset, the configuration that combines both S and Acc achieves the highest results
across all metrics and | A|, particularly for annotators with L and M expertise. In comparison to the
configuration that uses only Acc, the performance differences generally remain below 1.5%, and are
more evident for L expertise, especially at |A| = 15 and | A| = 30. On the other hand, the configuration
that considers only S shows lower results in all settings, with differences ranging from 1% to 2.5%
relative to the other R configurations. Similarly, in MNIST-Fashion, the combination of S and Acc leads
to the highest results, particularly for M and H expertise. Although the differences with the Acc-only
configuration are generally below 2%, the S-only configuration consistently produces lower values,




often with differences exceeding 3% to 5%. With regard to EMNIST-Letters, the use of Acc alone results
in the best performance in most cases; however, the gap in comparison to the combined configuration
remains below 1% in all scenarios. In contrast, using only S results in a reduced performance, especially
for smaller |A|, where the differences frequently surpass 5%. Finally, in the CIFAR-10 dataset, the
configurations involving Acc, whether alone or in combination with S, tend to outperform the S-only
approach. Nevertheless, the difference between the Acc-only and the combined configurations remains
typically under 1%.

Across all reputation configurations, the oracle size (|A|) influences the final performance out-
comes, as larger |A| were systematically associated with better results across all experiments and
datasets. The improvements observed when increasing | A| from 5 to 30 ranged from approximately 12%
to 18% in accuracy for CIFAR-10, 20% to 28% for MNIST-Fashion, 24% to 45% for MNIST, and up to 47% in
EMNIST-Letters. The same trend is observed for expertise level, although the magnitude of improvement
is less than the influence of | A|. In most cases, the increase from L to M falls within an interval of ap-
proximately 3-5%, while the improvement from M to H tends to be smaller and less significant, typically
around 2%. Nonetheless, this progression is not always consistent since, in configurations that include
Acg, a slight performance decrease, typically under 2%, is occasionally observed when moving from M
to H expertise at | A| = 5, and sometimes at | A| = 15. This effect, however, is not present when |A| = 30.

In terms of reputation, the experiments showed that, in configurations including Acc, repu-
tation values increase significantly with expertise level, by approximately 10%, but remain
unaffected by changes in oracle size (| A|). On the contrary, in the configuration that considers only S,
reputation increases with oracle size by around 8%, but remains stable across different levels of expertise.

Finally, it is important to note that the results related to the annotators showed no variation,
as they were generated in the same way using 30 different seeds, each corresponding to the index of
the run being executed.

7. Conclusion

To conclude, this study began by simulating imperfect annotators using probabilistic confusion matrices
sampled from dirichlet distributions. Each annotator was assigned a specific domain of expertise,
modeled as a single class for which they had a higher likelihood of producing correct labels. To reflect
different degrees of domain knowledge, three levels of expertise were defined, corresponding to expected
accuracies of 40%, 70%, and 98%. Building on this setup, a reputation model was formulated to capture
how reliable each annotator was in different domains. This model combined two components: the an-
notator’s observed accuracy (Acc) for each class, and the ratings they received from others (S), over time.

Whenever the learner queried a new instance, a group of annotators responded with their
predictions and the final label was chosen through a weighted voting mechanism, where each vote was
scaled according to the annotator’s reputation for the queried class. In this way, the labeling process
accounted not just for consensus but also for the reliability of each annotator, grounded in both their
past performance and agreement with others.

Following this, results showed that combining S and Acc generally led to small increases in
accuracy across all datasets when compared to using Acc alone. For instance, in the case of MNIST,
the combined reputation outperformed Acc by approximately 0.7%, 0.9%, and 0.3% for oracle sizes
|A| = 5, 15, and 30. In MNIST-Fashion, for |A| = 5 and 15, increases were about 0.9% and 1.3%, while
the difference for |A| = 30 was smaller, roughly 0.8%. The CIFAR-10 dataset showed improvements
below 0.5% for all oracle sizes. In contrast, the EMNIST-Letters dataset exhibited benefits from the
combined configuration, particularly with |A| = 30, where accuracy increased by nearly 1.5%. On



the other hand, relying only on S generally resulted in lower performance, especially when |A| = 5,
accuracy dropped by around 1.5% in MNIST, 3% in MNIST-Fashion, more than 5% in EMNIST-Letters,
and about 1.5% in CIFAR-10. These reductions tended to diminish as | A| increased, but in most cases,
performance still remained below that of Acc alone.

Moreover, results also show that both |A| and annotator expertise influenced model perfor-
mance. Specifically, increasing |A| from 5 to 30 led to improvements ranging from 12% in CIFAR-10
to as much as 47% in EMNIST-Letters, with the other datasets showing similar trends. Annotator
expertise also had a positive impact: transitioning from L to M expertise resulted in accuracy gains
of approximately 3% to 5%. However, moving from M to H expertise did not consistently lead to
improvements. In scenarios with smaller oracles (JA| = 5 or 15), accuracy even declined by up to 2%.
Nevertheless, this effect was no longer observed when |A| = 30.

For future work, there are many directions in which this study can be extended. One possi-
bility is to explore different query strategies, such as margin sampling or entropy sampling, instead
of using uncertainty sampling alone. Since, this would help to understand whether the reputation
mechanism adapts well to different selection criteria. It would also be useful to test more levels of
annotator expertise since, in this study, only three levels were used (Low, Medium, and High), but
adding more levels (such as five instead of three) could reveal a more detailled pattern in how expertise
influences performance. Another direction is to vary the oracle sizes beyond the three used here
(JA] = 5, 15, 30), and to see whether the trends observed remain consistent. It may also be interesting
to explore alternative ways of defining reputation itself. For example, instead of requiring that all
annotators rate each other, one could study scenarios where only a subset of annotators provides
ratings, or where a single designated expert is responsible for evaluating others.

Declaration on Generative Al

Generative Al tools, including Perplexity and Grammarly, were used in the preparation of this work.
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