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Preface

Science, technology, and commerce increasingly recognise the importance of ma-
chine learning approaches for data-intensive, evidence-based decision making.
This is accompanied by increasing numbers of machine learning applications
and volumes of data. Nevertheless, the capacities of processing systems or hu-
man supervisors or domain experts remain limited in real-world applications.
Furthermore, many applications require fast reaction to new situations, which
means that first predictive models need to be available even if little data is
yet available. Therefore approaches are needed that optimise the whole learning
process, including the interaction with human supervisors, processing systems,
and data of various kind and at different timings: techniques for estimating the
impact of additional resources (e.g. data) on the learning progress; techniques
for the active selection of the information processed or queried; techniques for
reusing knowledge across time, domains, or tasks, by identifying similarities and
adaptation to changes between them; techniques for making use of different types
of information, such as labeled or unlabeled data, constraints or domain knowl-
edge. Such techniques are studied for example in the fields of adaptive, active,
semi-supervised, and transfer learning. However, this is mostly done in separate
lines of research, while combinations thereof in interactive and adaptive ma-
chine learning systems that are capable of operating under various constraints,
and thereby address the immanent real-world challenges of volume, velocity and
variability of data and data mining systems, are rarely reported. Therefore, this
workshop aims to bring together researchers and practitioners from these differ-
ent areas, and to stimulate research in interactive and adaptive machine learning
systems as a whole. It continues a successful series of events at ECML PKDD
2017 in Skopje (Workshop and Tutorial), IJCNN 2018 in Rio (Tutorial), ECML
PKDD 2018 in Dublin (Workshop), ECML PKDD 2019 in Würzburg (Workshop
and Tutorial), virtual ECML PKDD 2020, and 2021 (Workshop).
The workshop aims at discussing techniques and approaches for optimising the
whole learning process, including the interaction with human supervisors, pro-
cessing systems, and includes adaptive, active, semi-supervised, and transfer
learning techniques, and combinations thereof in interactive and adaptive ma-
chine learning systems. Our objective is to bridge the communities researching
and developing these techniques and systems in machine learning and data min-
ing. Therefore, we welcome contributions that present a novel problem setting,
propose a novel approach, or report experience with the practical deployment of
such a system and raise unsolved questions to the research community.



II Preface

All in all, we accepted 6 papers (9 papers submitted) to be published in these
workshop proceedings. The authors discuss approaches, identify challenges and
gaps between active learning research and meaningful applications, as well as
define new application-relevant research directions. We thank the authors for
their submissions and the program committee for their hard work.

September 2022 Daniel Kottke, Georg Krempl,
Andreas Holzinger, Barbara Hammer
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Abstract. Active learning (AL) techniques hardly cope with complex
annotations tasks, where, for example, annotations might express rela-
tionships across data modalities. As a use case, we consider the task of
automatically detecting and reporting multimodal, polarized web con-
tent (PWC). Samples of this content type emerge dynamically, covering
a broad spectrum of topics. Thus, training machine learning systems for
detecting PWC is challenging, particularly if it needs to be done with
minimum annotation cost. In this article, we propose the concept of mul-
timodal AL for complex annotations in the context of PWC detection
and formulate the resulting challenges as questions for future research.

Keywords: Active Learning · Multimodal Data · Semantic Annotation
· Polarized Web Content · Hateful Memes.

1 Motivation

Supervised machine learning (ML) relies on vast amounts of annotated data of-
ten provided by human annotators in a labor-intensive process. Active learning
(AL) addresses this problem of costly data annotation by intelligently querying
annotators [2]. The goal is to maximize an ML system’s performance while min-
imizing the annotation cost. Although AL techniques have shown their benefit
for classification and regression tasks [7], they hardly cope with more complex
annotation tasks, where annotations might

– express relationships across data modalities (A1),
– describe (semantic) relationships between concepts (A2),
– come along with a high level of error-proneness and potential disagreement

among annotators due to an ambiguous context (A3),
– or require modeling background knowledge and sociodemographic factors of

annotators to estimate the quality of annotations (A4).
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As a use case, we consider the task of automatically detecting and reporting
potential multimodal [9], abusive web content in political communication, which
is in most cases strongly polarized. We use polarized web content (PWC) instead
of related expressions such as hateful memes [4,5] to highlight this polarized
nature. Generally, PWC comes in many forms, is subjective, depends on the
context, and frequently requires background knowledge to be understood [13].
In this article, we refer to PWC as multimodal online content, mainly text and
images, that can be found on social media and has, e.g., defamatory or abusive
characteristics (at least from the viewpoint of certain groups of persons). The left
side of Fig. 1 shows a PWC sample composed of an image of the burning World
Trade Center on 09/11 and an image of a Muslim congresswoman, Mrs. Ilhan
Abdullahi Omar. These two images are combined with a textual contradiction
of “never forget” and “you have forgotten”. The polarized context arises from
combining images and text (A1), which relates the concepts Twin Towers to
Muslims and terrorism (A2). Identifying this polarization requires knowledge
about American history and politics (A4) or otherwise may result in erroneous
annotations (A3). Such PWC samples emerge dynamically and unforeseeably,
covering a broad spectrum of concepts. Thus, training ML systems for detecting
PWC is challenging, particularly if it needs to be done annotation cost-efficiently.

Within this article, we view PWC detection as a challenging sample appli-
cation with real-world impact [11] to initiate research on extending AL systems
toward complex annotations of multimodal data. Therefore, we propose our con-
cept of multimodal active learning for complex annotations (MALCOM) and
formulate the associated challenges as questions for future research.

2 Concept

We envision MALCOM as an extension of traditional AL [2], which assumes a
single omniscient annotator providing categorical labels as annotations, toward
(1) semantic annotation graphs (SAGs) [15] as complex, multimodal annotations
and (2) an AL strategy selecting pairs of annotators and queries, e.g., samples.
The objective is to semi-automatically build models that can identify PWC and
analyze it by annotating a potential PWC sample with an SAG. Such an SAG
describes the PWC samples’ contents, explains why its contents can be seen as
polarized, and reflects the potential uncertainty in that analysis. Fig. 1 shows a
PWC sample and its SAG to illustrate this objective. In the following, we outline
our two envisioned extensions of AL and PWC detection in more detail.

Extension 1 – Complex, Multimodal Annotations: Existing PWC de-
tection approaches focus on standard supervised learning settings with cate-
gorical labels as annotations [1,6,16]. The outputs or embeddings of vision and
language models are typically combined as input for a final decision model. Our
proposed SAGs represent an alternative combination strategy for the two modal-
ities of images and text. SAGs allow decisions on a higher semantic level, which
fosters explainability and decouples objective annotation tasks such as concept
analysis of images and texts from more subjective decisions on polarization. We

2 M. Herde, D. Huseljic, J. Mitrović, M. Granitzer, B. Sick
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Fig. 1. PWC sample1with racist motive (left) and corresponding SAG (right) obtained
by combined image and text analysis: Rounded rectangles represent concepts, arrows
represent relations, and rectangular boxes represent inferred concepts. As a typical
indicator of PWC, a contradicting relation is highlighted in red. AL (center) is applied
for (1) unimodal image and text analysis and for (2) inferring whether a sample is
polarized from the SAG through multimodal semantic analysis. In this simplified figure,
we do not show additional information that is provided with the SAG, e.g., uncertainty
regarding object classes or positions in images, relations beyond contradictions, etc.

argue that this is a more efficient way of generating precise automatic classifica-
tions of PWC. Methodologically, we have to go far beyond annotating images or
text individually but considering their relationships. Annotations may describe
positions of objects in images (regions of interest), comparisons of two images or
texts, the importance of specific contexts for decisions, a degree of polarization,
confidence estimates regarding decisions, etc. We need to develop a proper se-
mantic model, e.g., ontologies [8,12], covering the different modalities and being
understandable for annotators. This also includes the ability to express very dif-
ferent PWC concepts over different modalities that go beyond contradictions but
include more fuzzy concepts such as antitheses or correlations between concepts.

Extension 2 – Query and Annotator Selection: Identifying PWC re-
quires contextual knowledge of (very recent) events, e.g., pandemics [14]. So
instead of building one generic model, we aim at building specialized models for
different kinds of PWC, which use pre-trained models (per modality), and fine-
tune them in an AL cycle. Extending the AL cycle towards complex annotations
of multimodal data, as sketched in Fig. 2, starts with the question of integrating
different modalities. First, we consider a pool of annotated unimodal data, i.e.,
texts and images, which we use to create unimodal models that can annotate

1 Image above is a compilation of assets, including ©Getty Images/Spencer Platt and
©Getty Images/Adam Bettcher, used under the “Hateful Memes Dataset License
Agreement”. It is taken from “The Hateful Memes Challenge” [5] for illustrative
purposes only and any person depicted in the content is a model.

Polarized Web Content Annotation based on Multimodal Active Learning 3
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Fig. 2. AL cycle for MALCOM with four main steps: (1) Useful queries are selected
from a set of all possible queries regarding potential PWC. For example, we may
query annotations for the objects in an image or ask whether an SAG is polarized. (2)
Selected queries are presented to a subset of annotators with possibly different (e.g.,
educational) backgrounds. This subset is determined through an ML-based annotator
model estimating the annotators’ qualifications. Subsequently, the annotated queries
update the training set. (3) The training set representing the current PWC corpus is
used to (re-)train several ML models, e.g., an object detection model. (4) The trained
models provide information regarding the query set such that the AL cycle starts again
using this information for query selection.

the unimodal data semantically. This process in each case results in an SAG,
i.e., a typed, attributed graph defined through an ontology-based annotation
scheme. Later, the SAGs are merged into a joint, multimodal SAG. Similar to
traditional AL strategies, we need to identify promising candidates – initially
images and texts, later multimodal SAGs – to be annotated. To consider the
problem’s multimodal nature, the annotations’ semantic properties, and the an-
notators’ diverse backgrounds, we must develop new AL selection strategies that
account not only for the respective data sample but also for the different kinds of
queries and the qualifications of certain annotators regarding the PWC sample
at hand. These qualifications (also referred to as annotator performance [2]) may
depend on various aspects such as the respective PWC category (e.g., politics)
or educational background (e.g., Master’s degree in political sciences). The an-
notator model predicting such qualifications needs to be sensitive to annotator
minorities, e.g., by estimating similarities between annotators. Otherwise, we
risk ignoring annotator minorities’ opinions regarding PWC. Moreover, we must
consider that answers regarding the degree to which content is polarized may
be highly subjective, i.e., uncertain from an ML perspective [3]. Establishing an
objective definition of PWC, similar to hate speech research [10], is a possible
way of reducing the subjectivity of PWC annotation.

4 M. Herde, D. Huseljic, J. Mitrović, M. Granitzer, B. Sick
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3 Research Questions

We conclude this article with the following six research questions derived from
the above key research objective and the required extensions.

– How can we define ontology-based annotation schemes to express a human’s
reasoning over classifying web content as (gradually) polarized or not?

– How can we extract image descriptions (part of the SAG) from potentially
polarized images (part of the PWC) considering different uncertainty types?

– How can we extend AL for object detection in potentially polarized images?
– How can we extend AL over text extracted from the images to identify

rhetorical figures and automatically analyze textual content to create se-
mantic annotations automatically?

– How can we merge unimodal SAGs and extend AL to train models, e.g.,
graph convolutional networks [17], assessing PWC via multimodal SAGs?

– How can we evaluate the above techniques and build or extend data cor-
pora [5] for research?
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notation for enriching educational content with linked data. KBS 55, 29–42 (2014)

16. Yang, F., Peng, X., Ghosh, G., Shilon, R., Ma, H., Moore, E., Predovic, G.: Ex-
ploring Deep Multimodal Fusion of Text and Photo for Hate Speech Classification.
In: ALW. pp. 11–18. Florence, Italy (2019)

17. Zhang, S., Tong, H., Xu, J., Maciejewski, R.: Graph convolutional networks: a
comprehensive review. Comput. Soc. Netw. 6(1), 1–23 (2019)

6 M. Herde, D. Huseljic, J. Mitrović, M. Granitzer, B. Sick



© 2022 for this paper by its authors. Use permitted under CC BY 4.0.

BioSegment: Active Learning segmentation for
3D electron microscopy imaging

Benjamin Rombaut1,2[0000−0002−4022−715X], Joris Roels2,3[0000−0002−2058−8134],
and Yvan Saeys1,2[0000−0002−0415−1506]

1 Department of Applied Mathematics, Computer Science and Statistics,
Faculty of Science, Ghent University, Ghent, Belgium

{benjamin.rombaut, yvan.saeys}@ugent.be
2 Data Mining and Modelling for Biomedicine, VIB-UGent

Center for Inflammation Research, Ghent, Belgium
3 VIB Bioimaging Core, VIB-UGent Center for Inflammation Research,

Ghent, Belgium

Abstract. Large 3D electron microscopy images require labor-intensive
segmentation for further quantitative analysis. Recent deep learning seg-
mentation methods automate this computer vision task, but require large
amounts of labeled training data. We present BioSegment, a turnkey
platform for experts to automatically process their imaging data and
fine-tune segmentation models. It provides a user-friendly annotation ex-
perience, integration with familiar microscopy annotation software and a
job queue for remote GPU acceleration. Various active learning sampling
strategies are incorporated, with maximum entropy selection being the
default. For mitochondrial segmentation, these strategies can improve
segmentation quality by 10 to 15% in terms of intersection-over-union
score compared to random sampling. Additionally, a segmentation of
similar quality can be achieved using 25% of the total annotation bud-
get required for random sampling. By comparing the state-of-the-art in
human-in-the-loop annotation frameworks, we show that BioSegment
is currently the only framework capable of employing deep learning and
active learning for 3D electron microscopy data.

Keywords: Active learning · Electron microscopy · Computer vision.

1 Introduction

Volume electron microscopy (vEM or 3D EM) describes a set of high-resolution
imaging techniques used in biomedical research to reveal the 3D structure of
cells, tissues and small model organisms at nanometer resolution. EM techniques
have emerged over the past 20 years, largely in response to the demands of
the connectomics field in neuroscience, and vEM is expected to be adopted
into mainstream biological imaging [23]. Generally, vEM data processing can be
divided into four consecutive steps: preprocessing, segmentation, post-processing
and downstream analysis.
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For the imaging data to be used by deep learning networks, some additional
preprocessing transformations include normalization and data augmentation. An
imaging experiment often includes metadata of the multiple samples, which need
to be compared against each other in downstream analysis. This is documented
using a folder structure or a data table. Some preprocessing steps to improve
imaging data include denoising [29,38], histogram equalization [39] and artifact
removal. Usually, the imaging data is downsampled or binned in order to reduce
data size and to speed up expert and model annotation, while still retaining
enough resolution to allow correct segmentation.
Next is segmentation, the detection and delineation of structures of interest. Seg-
mentation is required for extraction of quantitative information from rich vEM
data sets. Non-discriminant contrast, diversity of appearance of structures and
large image volumes turn vEM segmentation into a highly non-trivial problem,
where cutting-edge methods relying on state-of-the-art computer vision tech-
niques are still far from reaching human parity in segmentation accuracy [23].
Here, we only consider segmentation of mitochondria, but other cellular compo-
nents or tissue regions can also be of interest. Pretrained models can be applied
to a small sample in order to evaluate segmentation quality. If no model of suf-
ficient quality is available, a new model is created by using some training data
annotated by an expert (microscopist or biologist). Machine learning methods
can be trained to produce different flavors of segmentation, labelling the pixels
either by semantics (for example, label all mitochondria pixels as 1 and the rest
as 0) or by the objects they belong to (for example, label all pixels of the first
mitochondrion as 1, of the second mitochondrion as 2, of the nth mitochondrion
as n, with non-mitochondrion pixels as 0).
There are various post-processing steps to transform a semantic segmentation to
an object instance segmentation, such as connected components and watershed
transform. To further clean up the segmentation, there is usually some filtering
based on instance size.
After processing all samples of the experiment, a research question is answered in
a downstream analysis. Statistics of interest are calculated such as number of mi-
tochondria, mitochondria surface and volume. These statistics are summarized
in a data table and combined with the experiment metadata to quantify effects.
Although significant progress has been made in recent years, largely owing to
the introduction of deep learning-based methods, there is not yet a single reli-
able and easy-to-use solution for fully automated segmentation of vEM images.
Imaging experts must choose between (or combine) manual, semi-automated and
fully automated solutions based on the difficulty of the segmentation problem,
the data size and the computational expertise and resources of their team or
institution. Furthermore, almost all automated solutions rely on machine learn-
ing and may require large amounts of example segmentations to train a model,
although in some cases models trained for the same task on similar data sets are
available and can be applied directly [23].

8 B. Rombaut, J. Roels, Y. Saeys
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Machine learning-based segmentation models can be divided into two cate-
gories: feature-based learning and deep learning. Feature-based learning methods
use a set of predefined features (usually linear and non-linear image filters) as
input to a non-linear classifier such as a support vector machine or a random
forest that outputs the (semantic) segmentation. They need few examples and
are available via user-friendly tools. Methods using deep learning do not rely
on pre-computed features but, instead, learn features and segmentation jointly.
They can solve more difficult segmentation problems, but their superior accuracy
requires much larger amounts of examples, and the training must be performed
on graphics processing units (GPUs). Efficient training and post-processing pro-
cedures for deep learning methods in vEM constitute an active area of research
[23].
For successful application, the deep learning model needs to be trained on data
very similar to the data at hand, but annotated vEM training data is time-
consuming to create. Various approaches try to alleviate this problem: increasing
annotator efficiency using professional annotation software (i.e. MIB or Imaris),
sparse labeling [36] or refining model predictions using only points [10]. Addition-
ally, model performance can increase through self-supervised learning on large
unlabeled and heterogeneous data sets [14], generalizability-enhancing tricks
such as data augmentation or domain adaptation [27]. In any case, additional
fine-tuning on some labeled domain-specific data will improve segmentation per-
formance and may be even required [11]. When fine-tuning, model performance
can be further increased by choosing the most interesting samples to annotation
using active learning [24].
Active learning (AL) is a subdomain of machine learning that aims to minimize
label effort without sacrificing model performance. This is achieved by iteratively
querying a batch of samples to a label providing oracle, adding them to the train
set and retraining the predictor. The challenge is to come up with a smart se-
lection criterion to query samples and maximize the steepness of the training
curve [33]. In the setting of vEM segmentation, the oracle is a human imaging
expert, such as a microscopist or biologist. This makes our application human
or expert-in-the-loop, as the expert will be queried to provide labels through an
annotation interface. We consider the total volume of EM data as an offline pool
of unlabeled 2D training patches. A general overview of a human-in-the-loop
annotation workflow using AL for semantic segmentation is given in Figure 1.
To our knowledge, segmentation of vEM data in an AL setting is not an es-
tablished practice, i.e. the recent Empanada napari plugin [11] for vEM only
supports random sampling. In other fields, various tools employ AL to great
effect: Label Studio [35] is a flexible data annotation tool that supports seman-
tic segmentation, AL and prediction refinement. MONAI Label [12] is an open
source image labeling and learning tool that helps researchers and clinicians to
collaborate, create annotated datasets, and build AI models. It features 3D seg-
mentation refinement using 3D Slicer and AL sample selection. Kaibu [21] is a
web application for visualizing and annotating multidimensional images, featur-
ing deep learning powered interactive segmentation. Ilastik [7] is an easy-to-use

BioSegment: Active Learning segmentation for 3D imaging 9
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Fig. 1: Overview of active learning for image segmentation. A human imaging
expert starts an AL iteration and, using the existing segmentation model and
an active learning sampling strategy, ranks the unlabeled samples for labeling.
Batches of the most informative samples are annotated by the expert and added
to the labeled data pool. After enough new training data is created, the model
is fine-tuned on the labeled pool and model performance is expected to improve.
The expert can run subsequent AL iterations with the updated model on the
remaining unlabeled data, or stop the iterations when model performance is
sufficient or the annotation budget is spent.

10 B. Rombaut, J. Roels, Y. Saeys
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interactive tool that brings machine-learning-based (bio)image analysis to end
users without substantial computational expertise. It contains pre-defined work-
flows for image segmentation, object classification, counting and tracking.

In this paper, we propose three new contributions:

1. A comparison of five AL strategies for semantic segmentation on three vEM
datasets, on which we previously reported in our preprint [28].

2. A feature comparison between current state-of-the-art software frameworks
for human-in-the-loop active learning using deep learning segmentation mod-
els.

3. BioSegment, an integrated platform for imaging experts to process vEM
datasets using AL strategies.

First, we describe the software architecture of an AL semantic segmentation
framework in Section 2.1, the deep learning models in Section 2.2. We continue
with used AL strategies in Section 2.3 and validation datasets in Section 2.4. Our
three contributions are presented and discussed in Section 3. Lastly, we envision
future work in Section 4 and conclude in Section 5.

2 Methods

2.1 Software Architecture

Fig. 2: Flowchart of the BioSegment software stack. Users interact with a fron-
tend using their browser. They can visualize a dataset, edit annotations and
create segmentations using AI models. The BioSegment backend handles the
tasks given by the frontend and fetches the datasets from disk storage. For long-
running tasks like conversion, active learning, segmentation and fine-tuning, sep-
arate workers are used.

We give an overview of the BioSegment software architecture in Figure 2.
A central database is managed by a backend, implemented using FastAPI. It
features a documented REST API, database schemas for all modelled objects
and a job queue using Celery and Redis. For long-running tasks like conversion
and fine-tuning, separate workers are used, communicating via the messaging
bus of the job queue. For data conversion and viewing AICSImageIO [3] and
BioFormats [18] are used. The only communication requirement for the workers
is access to the Redis server port and the data storage. They can run on a
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different machine with GPU acceleration or a network with access to secure and
confidential imaging data. Segmentation models and tasks are implemented in
PyTorch, and models are serialized to disk. Tensorboard is used to visualize
training progression and predicted segmentation performance on selected image
samples.

The BioSegment software stack is reproducible using conda environments
and Docker containers. Staging and production deployments are managed us-
ing Docker Swarm. Restrictive enterprise firewalls can be overcome through the
Traefik reverse-proxy, which also provides security with automated HTTPS cer-
tificate management. Admin interfaces for network, user, database and job queue
management are also implemented. Clients can communicate with the backend
REST API to add imaging data, manage jobs and visualize results. Using a
code generation tool like OpenAPI Generator, the documented REST API from
the backend can automatically generate the client code library. This automated
step improves maintainability of multiple client interfaces and annotation soft-
ware plugins. A JavaScript frontend implements most of the backend API and
provides management of all data objects like users, datasets, segmentation, anno-
tations and models. A Dash dashboard provides an interface for sparse semantic
labelling. Datasets are accessed using file system paths in the backend and work-
ers. These paths resolve to a local mount of the remote disk storage. The mount
point is set up using sshfs.

2.2 Deep learning methods

We build on the PyTorch Lightning framework, which allows high-level but ad-
vanced training loops without the boilerplate code. It supports different ac-
celerator architectures and allows for reproducible and maintainable code. It
also features fine-tuning strategies, automated learning rate, batch size finders
and support for multiple GPUs and mixed integer training. Various segmen-
tation models are available: our own advanced U-Net implementations in the
published neuralnets [26] package and torchvision [5] which features pretrained
model weights.

2.3 Active learning strategies

Five AL strategies were implemented by us and are explained here. We consider
the task of semantic segmentation, i.e. given an image x ∈ X ⊂ RN with a
total amount of N pixels, we aim to compute a pixel-level labeling y ∈ Y , where
Y = {0, . . . , C−1}N is the label space and C is the number of classes. In particu-
lar, we focus on the case of binary segmentation, i.e. C = 2. Let pj(x) = [fθ(x)]j
be the probability class distribution of pixel j of a parameterized segmentation
algorithm fθ (i.e. an encoder-decoder network, such as U-Net[30]).
Consider a large pool of n i.i.d. sampled data points over the space Z = X × Y
as {xi,yi}i∈[n], where [n] = {1, . . . , n}, and an initial pool of m randomly cho-
sen distinct data points indexed by S0 = {ij |ij ∈ [n]}j∈[m]. An active learning
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algorithm initially only has access to {xi}i∈[n] and {yi}i∈S0
and iteratively ex-

tends the currently labeled pool St by querying k samples from the unlabeled
set {xi}i∈[n]\St

to an oracle. After iteration t, the predictor is retrained with
the available samples {xi}i∈[n] and labels {yi}i∈St , thereby improving the seg-
mentation quality. Note that, without loss of generalization, the active learning
approaches below are described for k = 1. We can also query k > 1 samples
for k iterations, without retraining, to achieve a batch of samples. The complete
active learning workflow is shown in Figure 1.

Maximum entropy sampling [16,17] Maximum entropy is a straightforward
selection criterion that aims to select samples for which the predictions are
uncertain. Formally speaking, we adjust the selection criterion to a pixel-wise
entropy calculation as follows:

x∗t+1 = arg max
x∈[n]\St

−
N−1∑

j=0

C−1∑

c=0

[pj(x)]c log [pj(x)]c. (1)

In other words, the entropy is calculated for each pixel and summed up. Note
that a high entropy will be obtained when pj(x) = 1

C , this is exactly when
there is no real consensus on the predicted class (i.e. high uncertainty).

Least confidence selection [9] Similar to maximum entropy sampling, the
least confidence criterion selects samples for which the predictions are un-
certain:

x∗t+1 = arg min
x∈[n]\St

N−1∑

j=0

max
c=0,...,C−1

[pj(x)]c. (2)

As the name suggests, the least confidence criterion selects the probability
that corresponds to the predicted class. Whenever this probability is small,
the predictor is not confident about its decision. For image segmentation,
we sum up the maximum probabilities in order to select the least confident
samples.

Bayesian active learning disagreement [13] The Bayesian active learning
disagreement (BALD) approach is specifically designed for convolutional
neural networks (CNNs). It makes use of Bayesian CNNs in order to cope
with the small amounts of training data that are usually available in active
learning workflows. A Bayesian CNN assumes a prior probability distribu-
tion placed over the model parameters θ ∼ p(θ). The uncertainty in the
weights induces prediction uncertainty by marginalizing over the approxi-
mate posterior:

[pj(x)]c ≈
1

T

T−1∑

t=0

[
pj(x; θ̂t)

]
c
, (3)

where θ̂t ∼ q(θ) is the dropout distribution, which approximates the prior
probability distribution p. In other words, a CNN is trained with dropout
and inference is obtained by leaving dropout on. This causes uncertainty in
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the outcome that can be used in existing criteria such as maximum entropy
(Equation (1)).

K-means sampling [8] Uncertainty-based approaches typically sample close
to the decision boundary of the classifier. This introduces an implicit bias
that does not allow for data exploration. Most explorative approaches that
aim to solve this problem transform the input x to a more compact and
efficient representation z = g(x) (e.g. the feature representation before the
fully connected stage in a classification CNN). The representation that we
used in our segmentation approach was the middle bottleneck representa-
tion in the U-Net, which is the learned encoded embedding of the model.
The k-means sampling approach in particular then finds k clusters in this
embedding using k-means clustering. The selected samples are then the k
samples in the different clusters that are closest to the k centroids.

Core set active learning [32] The core set approach is an active learning ap-
proach for CNNs that is not based on uncertainty or exploratory sampling.
Similar to k-means, samples are selected from an embedding z = g(x) in
such a way that a model trained on the selection of samples would be com-
petitive for the remaining samples. Similar as before, the representation that
we used in our segmentation approach was the bottleneck representation in
the U-Net. In order to obtain such competitive samples, this approach aims
to minimize the so-called core set loss. This is the difference between the av-
erage empirical loss over the set of labeled samples (i.e. St) and the average
empirical loss over the entire dataset that includes the unlabeled points (i.e.
[n]).

2.4 Validation datasets

Three public EM datasets were used to validate our approach:

– The EPFL dataset4 represents a 5× 5× 5 µm3 section taken from the CA1
hippocampus region of the brain, corresponding to a 2048 × 1536 × 1065
volume. Two 1048×786×165 subvolumes were manually labelled by experts
for mitochondria. The data was acquired by a focused ion-beam scanning
EM, and the resolution of each voxel is approximately 5× 5× 5 nm3.

– The VNC dataset5 represents two 4.7× 4.7× 1 µm3 sections taken from the
Drosophila melanogaster third instar larva ventral nerve cord, corresponding
to a 1024 × 1024 × 20 volume. One stack was manually labelled by experts
for mitochondria. The data was acquired by a transmission EM and the
resolution of each voxel is approximately 4.6× 4.6× 45 nm3.

– The MiRA dataset6[37] represents a 17×17×1.6 µm3 section taken from the
mouse cortex, corresponding to a 8624 × 8416 × 31 volume. The complete
volume was manually labelled by experts for mitochondria. The data was

4 Data available at https://cvlab.epfl.ch/data/data-em/
5 Data available at https://github.com/unidesigner/groundtruth-drosophila-vnc/
6 Data available at http://95.163.198.142/MiRA/mitochondria31/
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acquired by an automated tape-collecting ultramicrotome scanning EM, and
the resolution of each voxel is approximately 2× 2× 50 nm3.

In order to properly validate the discussed approaches, we split the available
labeled data in a training and testing set. In the cases of a single labeled volume
(VNC and MiRA), we split these datasets halfway along the y axis. A smaller
U-Net (with 4 times less feature maps) was initially trained on m = 20 randomly
selected 128× 128 samples in the training volume (learning rate of 1e−3 for 500
epochs). Next, we consider a pool of n = 2000 samples in the training data to be
queried. Each iteration, k = 20 samples are selected from this pool based on one
of the discussed selection criteria, and added to the labeled set St, after which
the segmentation network is fine-tuned (learning rate of 5e−4 for 200 epochs).
This procedure is repeated for T = 25 iterations, leading to a maximum training
set size of 500 samples. We validate the segmentation performance using the
intersection-over-union (IoU) metric, also known as the Jaccard score:

J(y, ŷ) =

∑
i [y · ŷ]i∑

i [y]i +
∑

i [ŷ]i −
∑

i [y · ŷ]i
(4)

3 Results

3.1 Active Learning validation

We validated five AL strategies on three public EM datasets. The resulting learn-
ing curves of the discussed approaches on the three datasets are shown in Figure
3. We additionally show the performance obtained by full supervision (i.e. all
labels are available during training), which is the maximum achievable segmenta-
tion performance. There is an indication that maximum entropy sampling, least
confidence selection and BALD outperform the random sampling baseline. These
methods obtain about 10 to 15% performance increase for the same amount of
available labels for all datasets. Additionally, a segmentation of similar quality
can be achieved using 25% of the total annotation budget required for random
sampling. The core set approach performs similar to slightly better than the
baseline. We expect that this method can be improved by considering alterna-
tive embeddings. Lastly, we see that k-means performs significantly worse than
random sampling. Even though this could also be an embedding problem such
as with the core set approach, we think that exploratory sampling alone will not
allow the predictor to learn from challenging samples, which are usually outliers.
We expect that a hybrid approach based on both exploration and uncertainty
might lead to better results, and consider this future work.

Figure 4 shows qualitative segmentation results on the EPFL dataset. In par-
ticular, we show results of the random, k-means and maximum entropy sampling
methods using 120 samples, and compare this to the fully supervised approach.
The maximum entropy sampling technique is able to improve the others by a
large margin and closes the gap towards fully supervised learning significantly.

Lastly, we are interested in what type of samples the active learning ap-
proaches select for training. Figure 5 shows 4 samples of the VNC dataset that
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Fig. 3: Learning curves for the five discussed active learning approaches, random
sampling and full supervision for the three different datasets. Entropy sampling
performs well across the datasets. Note that for entropy and random sampling
for EPFL, the difference in model performance for the same number of samples
(difference in y-axis) is 15% and difference in number of samples needed for the
same model performance (difference in x-axis) is 25%.
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(a) Input (b) Ground truth (c) Full supervision (0.857)

(d) Random (0.733) (e) k-means (0.710) (f) Maximum entropy (0.813)

Fig. 4: Segmentation results obtained from an actively learned U-Net with 120
samples of the EPFL dataset based on random, k-means and maximum entropy
sampling, and a comparison to the fully supervised approach. Jaccard scores are
indicated between brackets.

correspond to the highest prioritized samples, according to the least confidence
criterion, that were selected in the first 4 iterations. The top row illustrates the
probability predictions of the network at that point in time, whereas the bot-
tom row shows the pixel-wise uncertainty of the sample (i.e. the maximum in
Equation (2)). Note that the initial predictions at t = 1 are of poor quality, as
the network was only trained on 20 samples. Moreover, the uncertainty is high
in regions where the network is uncertain, but it is low in regions where the
network is wrong. The latter is a common issue in active learning and related
to the exploration vs. uncertainty trade-off. However, over time, we see that the
network performance improves, and more challenging samples are being queried
to the oracle.

3.2 Feature comparison

We define five software features of interest for an AL software framework for
vEM data:

Interactive fine-tuning The expert should be able to fine-tune a segmentation
model with their own newly annotated data. For deep learning models, this
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t = 1 t = 2 t = 3 t = 4

Fig. 5: Illustration of the selected samples in the VNC dataset over time in the
active learning process. The top row shows the pixel-wise prediction of the se-
lected samples at iterations 1 through 4. The bottom row show the pixel-wise
least confidence score on the corresponding images.

Software features

Software frameworks interactive
fine-tuning

active
learning

large
datasets

3D
support

remote
resources

Label Studio [35] x x x
Kaibu [21] x x
napari-empanada [11] x x x
ilastik [7] x x x x x
MONAI Label [12] x x x x x
BioSegment x x x x x

Table 1: Comparison of open-source software frameworks for human-in-the-loop
active learning using segmentation models.

involves optional GPU acceleration and reporting on training status and
accuracy. All considered frameworks have this feature.

Active learning The framework should support sampling the unlabeled data
using an AL strategy. Some frameworks have only proposed this feature for
future work and only implemented a random sampling strategy.

Large datasets The expert should be able to apply existing and newly trained
models on their whole dataset, no matter the size. This feature is the most
lacking, as it requires support for tiled inference and long-running jobs.

3D support The supported annotation interfaces of the framework should al-
low the expert to freely browse consecutive slices or volumes in 3D.

Remote resources In order to process large datasets, large storage and compu-
tational resources such as workstations and GPU’s are needed. This usually
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requires a flexible software architecture and communication over a network
interface or software worker queue.

BioSegment combines the desirable software features needed for analyz-
ing vEM data in one framework and is the only AL framework currently used
as such. Ilastik is an established interactive annotation tool with support for
standard ML segmentation. Recently, it has added beta support for a remote
GPU task server (tiktorch [2]) and an active learning ML segmentation work-
flow [1] using SLIC features and supervoxels for vEM. All this functionality is
however still in beta, sparsely documented and not yet applied for deep learning
models or mitochondria segmentation. napari-empanada is the most recent de-
velopment in vEM segmentation, but has no support for AL. The lack of support
for remote resources could however be solved by running napari remotely using
VirtualGL [22] or using a remote Dask cluster or data store [25]. Lastly, the
recently developed feature set of MONAI Label is exciting. However, it is little
over a year old, has no reported usage by the EM community, and mostly targets
radiology and pathology use cases. Nevertheless, it can be adapted for EM and
integrated in our BioSegment workflow, as shown in 6c. We note that a remote
GPU-accelerated model execution is a hallmark of most frameworks: the worker
queue in BioSegment and MONAI Label, the Label Studio ML backend and
the ilastik tiktorch server.

3.3 BioSegment workflow

After image capturing and storing the raw microscopy data on disk, experts
start the BioSegment workflow. Through a dedicated dashboard (Figure 6a),
the expert can create a new dataset holder and import the imaging data directly
by providing the folder path. This starts a new annotation workflow. The expert
can start preprocessing and segmentation jobs for the whole dataset and visual-
ize the result (Figure 6b).
If no existing model has the desired quality, experts can choose a model to
fine-tune. A batch of sampled images from the unlabeled dataset is chosen for
annotation. An interface for sparse semantic labelling is provided, and the sub-
set can be exported to different bioimaging annotation software like 3D Slicer
(Figure 6c), Amira (ThermoFisher Scientific), Imaris (Oxford Instruments), Fiji
[31] or napari [34]. The chosen model can be fine-tuned on the created training
data and model performance can again be evaluated.

The annotation workflow can be augmented using active learning loops: the
subset of images to be sampled can be selected by one of the five implemented
active learning strategies, informed by the chosen model. After annotation by the
expert, this model will be fine-tuned and again be used for selecting the following
batch of images, creating an active learning loop and immediately incorporating
the expert feedback in the sampling process. By empowering imaging experts
with a dashboard to run by themselves multiple active learning iterations and
segmentation jobs on their datasets, active learning can be incorporated into
their normal annotation workflow. The expert can stop the iterations when they
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(a) BioSegment Dashboard

(b) BioSegment model
viewer

(c) External viewer (3D Slicer)

Fig. 6: Three example BioSegment interfaces. 6a: The dashboard where users
can manage all settings. 6b: Models can be viewed and fine-tuned with training
data using the viewer interface data. 6c: Results can be exported and used in
external programs such as 3D Slicer and MONAI Label.
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are satisfied with the segmentation quality in the preview or their annotation
budget is depleted. The number of iterations is usually three or higher, but this
highly depends on the dataset and on the computer vision task.
When a segmentation model of high enough quality is achieved, it can be applied
to the whole dataset like the other pre-existing models. The labelled data can
be added to a pool of general training data in order to train better performing
models for future fine-tuning tasks. Experts can download the segmented dataset
for further downstream analysis.
The BioSegment software stack is deployed at biosegment.ugent.be and used
internally at the Flemish Institute for Biotechnology (VIB) for annotating new
vEM datasets. It automates the previous manual active learning loops between
imaging experts at a partnering imaging facility and deep learning scientists in
our computational lab. The code is available at GitHub and features a docu-
mentation site.

4 Future work

Computer vision is not limited to single class semantic segmentation problems.
Mitochondria form 3D shapes and networks, requiring 3D post-processing to
achieve accurate instance segmentation. Other cell organelles are of equal inter-
est, and large amounts of existing data are now available through the OpenOr-
ganelle data portal [15]. Multi-class semantic segmentation is currently imple-
mented, but the label map is not standardized. Interfacing with the BioImage
Model Zoo [20] would help in this regard. We also plan to further integrate pre-
processing steps like denoising, as these are still done with a separate script.
Beside image enhancement, volume reconstruction and multimodal registration
are two different data processing workflows in EM that would be beneficial to
implement.
Recent advances in tooling include napari, an interactive, multidimensional im-
age viewer for Python and the Java-based Paintera [4] for dense labeling of
large 3D datasets. Together with cloud-based file formats like NGFF [19] these
would facilitate annotating and processing large imaging experiments. Integra-
tion with Dask [25], a flexible open-source Python library for parallel computing,
would allow immediate preview of complex workflows and scaling for the whole
dataset using long-running jobs. These advances allow for new annotation ex-
periences. For example, a region-of-interest free approach where the annotator
freely browses the whole dataset and the current model prediction and uncer-
tainty is lazily updated depending on the view-port. By creating multi-resolution
maps of the model uncertainty, the expert is informed on the model performance
over the whole dataset and is free to choose which regions to annotate.
Complexity of the software stack can be out-sourced to existing free software
libraries. Lightning AI further removes boilerplate code in deep learning models
by providing App and Flow interfaces. Data management and worker communi-
cation in BioSegment can be handled by Girder, which also utilizes the Celery
job queue. By creating or integrating with plugins for already established an-

BioSegment: Active Learning segmentation for 3D imaging 21



16 B. Rombaut et al.

notation tools, adoption of the BioSegment workflow can be improved. Active
development in the 3D Slicer and napari communities for chunked and mul-
tidimensional file formats, instance segmentation and collaborative annotation
proofreading tools will also improve the future BioSegment feature set. For AL
research, it would be valuable to add instrumentation to these annotation tools
in order to better capture the burden of the annotation work by the expert.
Currently, number of samples and total annotated pixels can be measured, but
actual time and number of clicks would be more accurate metrics. BioSegment
can be adapted to capture these interesting metrics. Greater model performance
can be achieved by including automated hyperparameter optimization such as
Optuna [6]. This and other AutoML strategies would further automate model
training.

5 Conclusions

We present BioSegment, a turnkey solution for Active Learning segmentation
of vEM imaging. It provides a user-friendly annotation experience, integration
with familiar microscopy annotation software and a job queue for remote GPU
acceleration. Expert annotation is augmented using active learning strategies.
For mitochondrial segmentation, these strategies can improve segmentation qual-
ity by 10 to 15% in terms of intersection-over-union score compared to random
sampling. Additionally, a segmentation of similar quality can be achieved using
25% of the total annotation budget required for random sampling. The soft-
ware stack is maintainable through various automated tests, and the code base
is published under an open-source license. By comparing the state-of-the-art in
human-in-the-loop annotation frameworks, we show that BioSegment is cur-
rently the only framework capable of employing deep learning and active learning
for 3D electron microscopy data.
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Abstract. One of the major limitations of deploying a machine learning
model is the availability of labeled training data and the resulting expen-
sive annotation process. Although active learning (AL) methods may re-
duce the annotation cost by actively selecting the most-useful instances,
a costly human annotator usually provides the labels. Therefore, even
with AL, we still consider the annotation process to be time-consuming
and expensive. Besides human annotators, though, companies often have
a vast amount of information and knowledge sources available that can
generate low-cost labels (e.g., a black-box model) or improve the learn-
ing process (e.g., a pre-trained model). We present a novel approach that
enhances AL with weak supervision (WS) and transfer learning (TL) to
reduce the annotation cost by leveraging these sources. Specifically, we
consider a black-box model like a rule-based system as an error-prone
and weakly-supervised annotator that inexpensively provides labels. We
estimate its performance with an annotator model to decide whether a
human annotation is required. Additionally, we utilize unlabeled internal
and external data by transferring knowledge from a pre-trained model
to the AL cycle. We sequentially investigate the impact of WS and TL
on annotation cost and model performance in an AL cycle through a use
case. Our evaluation shows that our approach can reduce annotation cost
by 51% while achieving nearly identical model performance compared to
a traditional AL approach.

Keywords: Active Learning · Weak Supervision · Transfer Learning ·
Information and Knowledge Sources.

1 Introduction

In recent years, there has been an increasing interest in machine learning ap-
plications across all industries [25]. In particular, (deep) neural networks (NNs)
have proven beneficial for unstructured data types such as image or text data.
However, one of the major real-world bottlenecks in deploying a NN is the need
for large labeled training data sets to reach peak performance [25,30]. To reduce
annotation cost for the training process, active learning (AL) [4,31] is a part
of human-in-the-loop learning [13] where we actively select the most-useful in-
stances. The goal is to reduce annotation cost while maximizing the performance



2 L.Rauch et al.

of a model trained on an actively selected subset from an unlabeled data pool
[32,12]. However, since a human annotator (HA) usually provides the labels,
the annotation process may still be time-consuming and expensive [11]. Besides
HAs, companies usually have a wide range of information and knowledge sources
[10] available such as an established black-box model (BBM) like a rule-based
system [23] or external data and a pre-trained model from the Internet. These
sources can provide labels (information source) or contain beneficial knowledge
for training NNs (knowledge source). Nevertheless, they are often ignored or not
fully utilized in practice. This raises the question of how to efficiently leverage
and extract information and knowledge from available sources to further reduce
the annotation cost in AL.

To address this question, research fields such as weak supervision (WS) [1,5]
and transfer learning (TL)[26] provide suitable methods. Specifically, WS meth-
ods generate noisy labels at low cost, e.g., with expert-defined rules or labeling
heuristics [2,30] and are typically applied after obtaining a high-quality labeled
data set. In TL [26], acquired knowledge of a pre-trained model is transferred
to a different but related downstream task. Combining AL-WS and AL-TL has
already shown promising results to further reduce the annotation cost in AL
[7,33]. However, to the best of our knowledge, there has not yet been a combi-
nation of all three fields in which multiple available information and knowledge
sources are exploited. Therefore, we investigate the following research questions
in this work:

Question 1. How can we enhance AL with WS so that we can leverage an avail-
able BBM as an information source to reduce the annotation cost with a com-
petitive model performance compared to a traditional AL approach?

Question 2. How far can the inclusion of TL to leverage unlabeled internal and
external data as knowledge sources empower the combination of AL-WS and,
thus, further reduce the annotation cost and improve the model performance?

To answer those research questions, we conduct experiments in a real-world use
case where we thematically classify banking transactions based on text data.
We extend an AL cycle with WS, training a classification and annotator model
simultaneously. Specifically, we consider an available BBM (a rule-based system
in our use case) as an error-prone and weakly-supervised annotator (WSA). The
annotator model allows us to decide whether annotations can be performed at
low cost by the WSA without a costly HA (a domain expert in our use case).
In addition, we further enhance the AL-WS cycle with TL. We fine-tune a pre-
trained model (a language model in our use case) from an external source on
unlabeled internal data for the downstream task with unsupervised learning.
This allows us to use labeled and unlabeled data to train our models in the AL
cycle. By doing so, we are the first to provide an approach to combine AL with
WS and TL by leveraging multiple available information and knowledge sources.
Based on the evaluation of our experiments, we summarize our contributions as
follows:
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1. Enhancing AL with WS by leveraging a rule-based system as an information
source through an annotator model leads to a reduction of the annotation
cost by 43% with a nearly identical model performance compared to a tra-
ditional AL approach. Our approach applies without any adjustments to a
rule-based system and any BBM that provides class labels (e.g., a classifica-
tion model).

2. With the addition of TL, we leverage unlabeled internal data for the down-
stream task and unlabeled external data through a pre-trained model as
knowledge sources for the learning process. This enables us to reduce the
annotation cost by 51% compared to a traditional AL approach and im-
prove the model performance compared to the combination of AL-WS.

The remainder of this article is structured as follows. Section 2 presents related
approaches and illustrates the difference in our work. Subsequently, we propose
our approach in Section 3 and evaluate it in Section 4 within a use case. Finally,
we conclude our work and present future challenges in Section 5.

2 Related Work

Since AL is the backbone of our approach, we focus on related work regarding
combinations of AL-WS and AL-TL. To the best of our knowledge, there has
been no attempt yet to enhance AL with WS and TL.

Active Learning and Weak Supervision. Similar to our approach, [24] and [2]
combine AL and WS. However, in their approaches, human experts actively
select and annotate instances to improve a generative model that converts one-
hot-encoded into probabilistic labels. Moreover, the authors of [3] use this combi-
nation to improve the expert rules of a WS model with interactive user feedback.
In contrast to our approach, these methods primarily focus on WS and try to
improve it with AL techniques. Instead, we focus on an AL cycle and enhance it
with WS to reduce the annotation cost. Additionally, these works require labeling
functions that are created from scratch. We, on the contrary, can automatically
leverage information from any existing BBM that generates class labels without
necessarily designing labeling functions. This simplification saves the effort to
decompose an existing BBM for a generative model and enables us to treat it as
a WSA in an AL cycle.

In comparison, [7] and [28] follow a similar objective as we do since they also
aim to enhance a traditional AL cycle with WS techniques to reduce human
interaction. The authors of [7] assign a pseudo label for a given instance in
a self-training setting if the classifier’s predicted probability exceeds a certain
threshold. Additionally, they automatically assign the majority class label of
similar instances to all unlabeled instances in a cluster. Moreover, instead of
annotating single instances, [28] use human labels to annotate a cluster of similar
instances to reduce human effort. However, these works do not consider a BBM
that generates class labels in a real-world setting. We automatically leverage this
existing knowledge source through an annotator model, reducing the annotation
cost in an AL cycle.

Enhancing Active Learning with Weak Supervision and Transfer Learning 29
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Active Learning and Transfer Learning. The authors of [27] combine AL and
TL but from a different perspective. While we aim to improve AL with TL, they
enhance TL by actively selecting the most-suitable instances for the source do-
main from the target domain. Furthermore, [14] actively fine-tune a pre-trained
model based on the contribution of an instance for the feature representation
and performance of a classification model on a target task to reduce the anno-
tation cost. In contrast, we do not actively select instances in the TL process
but enhance a classification and annotator model within an AL cycle with trans-
ferred knowledge. Additionally, [17] investigate how TL mitigates the random
initialization cold start and reduces label queries. The authors of [33] also lever-
age available unlabeled data but through unsupervised feature learning at the
beginning of an AL cycle and semi-supervised learning during the cycle. They
employ unsupervised pre-training by clustering the features and train a semi-
supervised model by generating pseudo-labels for unlabeled instances. This way,
they improve the model’s performance while requiring less labeled data [33].
In our approach, however, we apply unsupervised learning not only on existing
internal data but also propose to utilize external knowledge sources with TL.

3 Proposed Approach

In Section 3.1, we first give a formal definition of our problem setting. Conse-
quently, we describe our proposed approach in Section 3.2 as shown in Figure 1.
We design a modular approach so that we can selectively combine AL with WS
and TL. This enables us to compare the influence of the individual components
on the model performance and annotation cost.

3.1 Problem Setting

Problem. We consider a classification problem where we have a D-dimensional
instance that is described by a feature vector x ∈ X where X = RD describes the
feature space. An instance x is drawn independently from the same distribution
and belongs to a ground truth class label y ∈ Y where the set Y = {1, ..., C} de-
fines the space of all class labels and C is the number of classes. In a pool-based
AL scenario, we are given an unlabeled pool data set U(t) ⊆ X without class
labels. At each cycle iteration t ∈ N, we aggregate the most-useful instances
x∗ in a batch B(t) ⊂ U(t) with the size b ∈ N. These instances require labels
for the next cycle t+1 that annotators provide. Therefore, we define a set of
annotators A = {HA,WSA}, where we treat the HA as omniscient, providing
a costly ground truth class label and an available BBM as a WSA, providing
an error-prone class label at a low cost. Besides the class labels y to train the
classification model, we also add a binary agreement label z ∈ Z with the set
Z = {0, 1} to every instance in a batch to train the annotator model. We deter-
mine z based on the agreement between the labels provided by the HA and the
WSA. It represents which instances were correctly classified (1) or misclassified
(0) by the WSA. This means that we have to retrieve the WSA label at every
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selected instance. Thus, we denote the annotated batch as B∗(t) ∈ X × Y × Z
and the labeled data set as L(t) ⊆ X × Y × Z.

Model training. We express the classification model (e.g., a NN) through its
parameters at cycle iteration t as θt. This model is trained on the labeled data
set L(t) where either the HA or the WSA provide the class label y. It maps an
instance to a vector of class probabilities with fθt : X → ∆C−1, where ∆C−1 is
the C − 1 probability simplex spanned by C classes. Given an instance x ∈ X ,
the classification model predicts the probability vector p̂ = fθt(x). This vector
corresponds to an estimate of the categorical distribution of the classes made
by the model fθt . Additionally, we describe the annotator model through its
parameters ωt which result from training on the binary agreement label z of the
labeled data set L(t). With the function gωt : X → [0, 1] the annotator model
maps an instance x ∈ X to a probability q̂ = gωt(x). Its task is to estimate
the probability that the WSA can provide a true class label. Thus, both models
receive the same input instances from L(t) but are trained either on class or
binary agreement labels. Moreover, we denote the parameters extracted from a
pre-trained model as ϕ. Since the pre-trained model is only trained once, these
parameters are independent of the cycle iterations.

3.2 Proposed Cycle

Our proposed AL cycle is illustrated in Figure 1. In the following paragraphs,
we will give a detailed explanation of the steps in our approach.

Step 1 - Initialize Cycle. Before the cycle starts, we fine-tune a pre-trained
model on the unlabeled data U and all additional data that we do not consider
for AL with unsupervised learning. This model supplies initial parameters ϕ for
the classification and annotator model and provides feature representations that
are helpful for AL [33]. Thus, we do not randomly initialize the parameters of
a model at each cycle iteration. In our case, we utilize a pre-trained language
model to extract word embeddings for the downstream task. In the first step,
1 at iteration t, the classification and annotator model are initially trained on
a small labeled data set L(t) where the instances x are drawn randomly from
the unlabeled pool data set U(t). Here, the HA provides the ground truth class
labels, and the WSA the error-prone class labels allowing us to compute the
binary agreement label, which is utilized for training the annotator model. After
the initialization step, we assume to have a trained classification model with the
parameters θt and a trained annotator model with the parameters ωt.

Step 2 - Select Batch. The cycle continues in step 2 with the selection algorithm
of theALmodule. We approximate the utility of all instances from the unlabeled
pool U(t) based on the entropy of the predicted probability of the classification
model fθt . Given a probability vector p̂, the entropy is defined as

H(p̂) = −
C∑

c=1

p̂c ln p̂c. (1)

Enhancing Active Learning with Weak Supervision and Transfer Learning 31
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Fig. 1. A schematic illustration of the proposed AL cycle with WS and TL.

At cycle iteration t, we select the instance with maximum entropy according to

x∗ = argmax
x∈U(t)

H
(
fθt(x)

)
. (2)

To aggregate a batch B(t) ⊂ U(t), we greedily select the most-useful instances x∗

until we reach the desired acquisition batch size b ∈ N. We refer to this sampling
strategy as max-entropy sampling.

Step 3 - Select Annotator. In step 3 with the WS module, we estimate the
annotator performance of the WSA to decide whether it should provide the
class labels for a specific instance. Therefore, we give each instance x∗ of the
selected batch B(t) to the annotator model gωt which estimates the probabil-
ity q̂. Intuitively, we interpret q̂ as the probability that the WSA is capable of
providing the ground truth class label. This way, the annotator model assesses
the performance of the WSA. With the annotator performance estimation we
decide whether to reject an error-prone class label of the WSA. In our approach,
we investigate a simple reject function1 that is based on threshold α and the
estimated probability q̂ as given by

rα(g
ωt(x∗)) =

{
1, if gωt(x∗) ≥ α

0, otherwise.
(3)

1 It should be noted that more complex reject functions are available that could be
the focus of future research.
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If a class label of the WSA is rejected, the HA has to provide the true class
label, enabling us to determine the binary agreement label z. However, suppose
we decide that the WSA can provide a ground truth class label. In that case, the
binary agreement label is set to 1 as a pseudo-label in the labeled pool. We refer
to this as a pseudo-label because no ground truth is available. This technique
can be considered semi-supervised learning [33].

Step 4 - Update Data Sets. In 4 , we update the unlabeled pool data set
U(t+1) = U(t)\B(t) with the instances from the aggregated batch. Additionally,
we update the labeled training set L(t+1) = L(t) ∪ B∗(t) with the annotated
batch including the class and the binary agreement labels.

Step 5 - Retrain Models. In 5 , the classification and annotator model are re-
trained from scratch simultaneously. Before training, we initialize the models’
parameters with the parameters ϕ we obtain from the unsupervised pre-trained
model. This leads to an update of the model parameters θt+1 and ωt+1.

Step 6 - Continue/Stop Cycle. At the end of an iteration, we decide in 6
whether to continue or stop the AL cycle with a stopping criterion. AL strategies
in literature often use a simple pre-defined stopping criterion such as the desired
size of the labeled pool or the maximum number of cycle iterations [20,31]. As
this is not in the scope of this work, we choose the maximum number of instances
as our stopping criterion.

4 Experimental Evaluation

In Section 4.1, we summarize the experimental setup for our use case. We design
our experiments to enhance the AL cycle sequentially with the WS and TL
modules to investigate their impact on model performance and annotation cost.
The first experiments in Section 4.2 detail our findings where we enhance AL
with WS to leverage an available BBM as an information source to reduce the
annotation cost. Subsequently, Section 4.3 gives insights on how the addition of
TL further improves our approach by utilizing internal and external unlabeled
data with a pre-trained model as a knowledge source.

4.1 Experimental Setup

Use Case and Data. The data set in our use case consists of banking transactions.
The goal is to predict an appropriate thematic class (e.g., household or insurance)
based on short text descriptions of transactions with a NN. We do not have a
labeled data set available, but the following information and knowledge sources
are at our disposal:

1. External Data: Besides internal in-domain data for the downstream task,
a vast amount of general-domain text data is available on the Internet [29].

Enhancing Active Learning with Weak Supervision and Transfer Learning 33
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As a pre-trained language model, we employ a fastText model [16] as a
knowledge source. This model was trained on a general-domain corpus [8]
and is available open-source2. We do not employ a deep transformer model
in this preliminary investigation to avoid the issues of deep AL.

2. Internal Data: We leverage an extensive unlabeled data set with 7.7 million
transactions to fine-tune the fastText model in an unsupervised manner with
in-domain knowledge. To conduct the experiments efficiently, we randomly
sample 9000 instances as the pool data set U and reserve 2000 instances with
ground truth class labels for testing.

3. Black-Box Model: A rule-based system that classifies transactions with
hand-crafted labeling rules is available. It was developed iteratively over
several years by domain experts, and we consider it a BBM since the labeling
rules are unavailable. We treat the BBM as the WSA that generates error-
prone class labels at low cost. Preliminary studies show that it achieves an
accuracy of approximately 86% on the test set.

4. Human Annotator: We assume a domain expert as an omniscient anno-
tator that delivers ground truth class labels at a high cost. Specifically, the
HA provides the class labels for the actively selected training instances when
the label of the WSA is rejected and for the initialization step.

Models. The results are obtained by a classification model in our proposed AL
cycle. The classification model is a multi-layer perceptron with an embedding
layer to represent the text input with D = 300, a hidden layer with a ReLU
activation function and an output layer with C = 36 neurons for each class. The
annotator model is comprised of a similar structure, differing only in the output
layer with C = 1 neuron as the annotator model solves a binary classification
task. In each cycle iteration, we create a new vocabulary from the labeled pool
and adapt the input layer of both models. We employ the Adam optimizer [18] to
optimize the parameters, and the focal loss [22] as a loss criterion to address class
imbalance. Additionally, we add dropout with 20% probability to the hidden
neurons. We extract the static word embeddings from the pre-trained fastText
model as initial weights of the embedding layers. This process can be considered
as sequential TL [29].

Overall Experimental Design. To ensure comparability between our experiments,
we define basic AL parameter configurations for all experiments. The configu-
rations are generally based on results from preliminary studies in this use case.
Specific settings for the experiments are highlighted in the corresponding sec-
tions. The initial labeled data set consists of 250 randomly sampled instances
with ground truth labels provided by the HA. In preliminary work, this has
proven to be a sufficient initial quantity of instances to enable the models to
provide information to select the most-useful instances and suitable annotators.
We set the desired size of the labeled data pool to 5370 as a pre-defined stopping
criterion and the acquisition batch size b to 32 with 161 cycle iterations t. Our

2 https://fasttext.cc/docs/en/crawl-vectors.html, accessed 2022-04-20
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previous studies have shown that this relatively small number of instances leads
to key results while enabling us to conduct experiments efficiently. We employ
random sampling as a baseline sampling strategy and compare it to max-entropy
sampling (Equation 2) for each experiment. Additionally, we decide between a
costly (HA) or low-cost class label (WSA) based on our proposed reject option
(Equation 3). Therefore, we define three different annotation scenarios to assess
the influence of the WSA and the resulting annotation costs:

1. full-human: The HA provides the class labels for all of the selected instances,
and we reject the class labels of the WSA. We consider this scenario a conven-
tional AL approach without WS that should achieve the highest performance
but generate the greatest baseline annotation cost.

2. hybrid : We select the WSA and the HA to provide the class labels based on
the assessment of the annotator performance. In preliminary studies, 0.85
has proven to be a simple and promising reject threshold α, ensuring that we
only accept labels of the WSA at high annotator performance estimations. At
the same time, we ask the HA only for very uncertain instances to minimize
annotation cost. Note that we must retrieve the class label of the WSA for
every instance to determine the binary agreement label. This scenario reflects
our approach combining AL with WS.

3. full-WSA: The WSA provides the class labels for all selected instances. This
approach is the most inexpensive regarding the annotation cost, but we
expect a deterioration of model performance. To ensure comparability, the
HA still determines the ground truth class labels for the random initialization
step.

As an exemplary cost scheme, we assign a cost of 1 to each annotation by the HA.
Since the maintenance of the rule-based system as the BBM and automatically
retrieving a class label also generates low cost, we assign 0.1 to an annotation
of the WSA. Additionally, each experiment is repeated five times with different
random seeds.

4.2 Experiments on AL with WS

This section shows the experimental results to answer research question 1. In
these experiments, we utilize the HA and the available rule-based system as
information sources with AL and WS.

Question 1. How can we enhance AL with WS so that we can leverage an avail-
able BBM as an information source to reduce the annotation cost with a com-
petitive model performance compared to a traditional AL approach?

Findings. In Figure 2, we show the test accuracy and annotation cost for the
aforementioned annotation scenarios and sampling strategies for each cycle it-
eration. Additionally, we report the final results in Table 1 after the AL cycle
reaches the stopping criterion. The savings metric represents the cost saved rel-
ative to the highest baseline cost with conventional AL. As Figure 2 shows on
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Table 1. Mean results (± standard error) of accuracy, annotation cost and savings of
the AL cycle with different sampling strategies and annotation scenarios.

Sampling Scenario Accuracy(↑) Cost(↓) Savings(↑)

random
full-human 0.849±0.001 5370 0
hybrid 0.842±0.001 1842±221 0.66
full-wsa 0.823±0.004 762 0.86

max-entropy
full-human 0.873±0.001 5370 0
hybrid 0.872±0.002 3045±46 0.43
full-wsa 0.842±0.002 762 0.86
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Fig. 2. Test accuracy and annotation cost with increasing size of the labeled data pool
in the AL cycle with different sampling strategies and annotation scenarios.

the right, the annotation costs for the annotation scenarios full-human (highest
baseline annotation cost and traditional AL) and full-wsa (lowest annotation
cost without HA) are constant and independent of the sampling strategy. The
former cost is identical to the size of the labeled pool since the HA provides
labels for each instance. For the latter cost, only the initial labels are provided
by the costly HA while the WSA generates the remaining labels at a low cost.
With our approach in the hybrid scenario, the annotation cost depends on a
mix of HA and WSA annotations. More WSA labels are generally rejected when
using max-entropy sampling compared to random sampling in our hybrid sce-
nario. The savings in Table 1 demonstrate that we can save annotation costs of
43% with max-entropy sampling and 66% with random sampling compared to
the baseline cost of 5370 in the full-human scenario. However, we can see that
random sampling degrades test accuracy. We attribute this to the fact that we
actively select instances where the classification model is most uncertain in each
batch. These also seem to be instances where the annotator model is uncertain
and, thus, we more frequently reject the error-prone WSA. Additionally, we can
observe a decreasing slope of the green cost curve with max-entropy sampling in
our hybrid scenario on the left side of Figure 2. This seems intuitive since the
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high-entropy instances from the unlabeled pool also diminish with cycle itera-
tions. Therefore, a bigger labeled pool as the pre-defined stopping criterion could
lead to only a slight increase in annotation cost and more strongly emphasize
the benefits of our approach. The slope of the purple cost curve further high-
lights this assumption as it is monotonously increasing with random sampling,
where we draw instances without considering the uncertainty of the classification
model.

When looking at the accuracy in Figure 2, we observe that the model perfor-
mance with max-entropy sampling is consistently superior to random sampling in
each annotation scenario. Table 1 supports this observation and shows a perfor-
mance increase of up to 3% in accuracy with AL. Accordingly, the classification
model’s accuracy grows more rapidly in each cycle iteration, and it reaches the
highest test accuracy with max-entropy sampling in the hybrid and full-human
annotation scenarios. This demonstrates how AL techniques enable us to ob-
tain a better classification accuracy with the same number of labeled instances
compared to random sampling. The worst classification accuracy is obtained by
random sampling in the full-WSA scenario. Accordingly, the results deteriorate
for both selection strategies when only the error-prone WSA provides the class
labels. Even though we can obtain savings of 86% in the full-WSA scenario, the
accuracy of the BBM (rule-based system) limits the achievable test accuracy of
the classification model. This emphasizes the importance of ground-truth class
labels from HAs and, thus, strengthens our combined approach in the hybrid sce-
nario. As we expect, the classification model provides the best accuracy in the
full-human scenario with max-entropy sampling as the traditional AL approach.
However, our approach in the hybrid scenario with max-entropy sampling deliv-
ers nearly identical test accuracy while reducing the annotation cost by 43%, as
seen by savings in Table 1. Our results show that while costly HAs are important,
we can also leverage a BBM as an additional information source. These obser-
vations let us conclude that our combination of AL and WS greatly reduces the
annotation cost with only a marginal performance loss compared to traditional
AL.

4.3 Experiments on AL with WS and TL

In this section, we conduct experiments with our complete proposed approach
to tackle the second research question. In addition to WS and AL, we leverage
all of the available unlabeled data to train a language model, which serves as a
sequential TL approach. We focus on the hybrid annotation scenario with and
without pre-training. So, we assess the influence of using all available information
and knowledge sources on the model performance and annotation cost.

Question 2. How far can the inclusion of TL to leverage unlabeled internal and
external data as knowledge sources empower the combination of AL-WS and,
thus, further reduce the annotation cost and improve the model performance?

Findings. Figure 3 shows the test accuracy and annotation cost for the aforemen-
tioned sampling strategies in the hybrid scenario with and without pre-training.
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Table 2. Mean results (± standard error) of accuracy, annotation cost, and savings of
the AL cycle in different annotation scenarios with and without TL

Sampling Scenario Accuracy(↑) Cost(↓) Savings(↑)

random
full-human 0.879±0.002 5370 0
hybrid 0.876±0.002 1819±51 0.66
full-wsa 0.840±0.003 762 0.86

max-entropy
full-human 0.894±0.003 5370 0
hybrid 0.893±0.001 2652±40 0.51
full-wsa 0.847±0.002 762 0.86
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Fig. 3. Test accuracy and annotation cost with increasing size of the labeled data pool
in the AL-WS cycle with and without TL.

In Table 2, we summarize the final results in all annotation scenarios with pre-
training. We can see in Figure 3 that utilizing pre-trained weights gives the
classification model a clear head start in performance. After initial training in
the hybrid scenario, the model already reaches an accuracy of 60% for random
(orange curve) and max-entropy (blue curve) sampling. This increase represents
a 20% improvement over the green and red curves without pre-training. The ad-
vantage generally decreases with more training data but remains fundamentally
intact and demonstrates the benefits of adding TL to our WS-AL approach, as
also demonstrated in Table 2. We obtain the best results with the fastest accu-
racy increase in each iteration with pre-training and maximum-entropy sampling
(blue curve). However, with the increasing size of the labeled data set, the ac-
curacy of max-entropy sampling without pre-training adjusts to the same level
of random sampling with pre-training. This means that max-entropy sampling
has the same effect on the final model accuracy as leveraging the knowledge
extractable from 7.7 million transactions and shows the general advantage of
AL as the backbone of our approach. Table 2 further highlights the increase in
accuracy in all annotation scenarios with TL compared to Table 1. Additionally,
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the curves’ trajectories with pre-training are more consistent with much less
performance variance across the experiments’ seeds.

On the right sight in Figure 3, we can see that the annotation cost with pre-
training for max-entropy sampling is lower than without pre-training. Again,
random sampling leads to lower annotation costs and poorer accuracy and con-
firms the benefits of using AL from the results above. Table 2 also highlights
the improved savings of 51 % with the addition of TL compared to the baseline
cost of 5370 with an 8 % increase relative to AL-WS. Moreover, we assume that
the transferred knowledge improves the classification model’s and the annota-
tor model’s certainty estimations. This means that pre-trained weights enable
us to more efficiently select the most-useful instances and the low-cost annota-
tions of the WSA. The results demonstrate the benefits of enhancing our AL-WS
approach with TL by also leveraging available unlabeled data as a knowledge
source with a pre-trained model. With our AL-WS-TL approach, we can improve
the overall test accuracy of the classification model while further reducing the
annotation cost.

5 Conclusion and Future Work

This work presented a novel approach to extending AL with WS and TL to
reduce the annotation cost by leveraging multiple information and knowledge
sources. We treated an established BBM (e.g., a rule-based system) as a weakly-
supervised annotator that provides error-prone class labels inexpensively. This
assumption made it possible to estimate the performance of this information
source with an annotator model to decide whether a costly human annotation
in an AL cycle is required. In a use case, we have successfully shown that en-
hancing AL with WS reduces annotation cost by 43% and leads to an almost
identical model performance compared to traditional AL. Moreover, we lever-
aged unlabeled internal and external data as knowledge sources by fine-tuning a
pre-trained language model on all available unlabeled data in an unsupervised
manner. We then transferred this knowledge to expand our AL-WS cycle with
TL. This enabled us to reduce the annotation cost by 51 % and improve the
overall model performance compared to the AL-WS approach.

Since we applied our proposed approach for a shallow NN, we plan to move
towards deep AL and the related problems in an application-oriented setting. To
provide an accurate probabilistic estimation for the selection of instances, we aim
to investigate the uncertainty estimates [15] of our classification and annotator
models and calibrate them with methods such as temperature scaling [9] or
scaling-binning [21]. Since we greedily acquired a batch of instances without
batch-awareness, we intend to use a more complex selection strategy, such as
BALD [6,19]. Moreover, we aim to enhance and further investigate the annotator
model to measure the label quality of other information sources in the annotation
process, such as the HA. Accordingly, we can move towards modern AL settings,
where we also consider the HA as error-prone and can determine a more complex
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cost scheme [11]. This could also be done in a multi-task learning setting by
embedding the annotator model directly into the classification model.
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Modal Data Programming Enables Rapid Medical Machine Learning. Patterns
1(2), 100019 (2020). https://doi.org/10.1016/j.patter.2020.100019

6. Gal, Y., Islam, R., Ghahramani, Z.: Deep bayesian active learning with image
data. In: Proceedings of the 34th International Conference on Machine Learning -
Volume 70. pp. 1183––1192. ICML (2017)

7. Gonsior, J., Thiele, M., Lehner, W.: WeakAL: Combining Active Learning and
Weak Supervision. In: Appice, A., Tsoumakas, G., Manolopoulos, Y., Matwin, S.
(eds.) Discovery Science. pp. 34–49. Lecture Notes in Computer Science, Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-61527-
7 3

8. Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vec-
tors for 157 languages. In: Proceedings of the International Conference on Language
Resources and Evaluation (LREC 2018) (2018)

9. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neu-
ral networks. In: Proceedings of the 34th International Conference on Machine
Learning. pp. 1321–1330. ICML (2017)

10. Hanika, T., Herde, M., Kuhn, J., Leimeister, J.M., Lukowicz, P., Oeste-Reiß, S.,
Schmidt, A., Sick, B., Stumme, G., Tomforde, S., Zweig, K.A.: Collaborative Inter-
active Learning – A clarification of terms and a differentiation from other research
fields. CoRR (2019). https://doi.org/10.48550/arXiv.1905.07264

11. Herde, M., Huseljic, D., Sick, B., Calma, A.: A survey on cost
types, interaction schemes, and annotator performance models in se-
lection algorithms for active learning in classification. CoRR (2021).
https://doi.org/10.48550/arXiv.2109.11301

40 L. Rauch, D. Huseljic, B. Sick



Enhancing Active Learning with Weak Supervision and Transfer Learning 15

12. Hino, H.: Active learning: Problem settings and recent developments. CoRR (2020).
https://doi.org/10.48550/arXiv.2012.04225

13. Holzinger, A., Plass, M., Kickmeier-Rust, M., Holzinger, K., Crişan, G.C., Pintea,
C.M., Palade, V.: Interactive machine learning: Experimental evidence for the hu-
man in the algorithmic loop: A case study on Ant Colony Optimization. Applied
Intelligence 49(7), 2401–2414 (2019). https://doi.org/10.1007/s10489-018-1361-5

14. Huang, S.J., Zhao, J.W., Liu, Z.Y.: Cost-Effective Training of Deep CNNs with
Active Model Adaptation. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. pp. 1580–1588. ACM (2018).
https://doi.org/10.1145/3219819.3220026

15. Huseljic, D., Sick, B., Herde, M., Kottke, D.: Separation of aleatoric and epis-
temic uncertainty in deterministic deep neural networks. In: 2020 25th In-
ternational Conference on Pattern Recognition (ICPR). pp. 9172–9179 (2021).
https://doi.org/10.1109/ICPR48806.2021.9412616

16. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of Tricks for Efficient Text
Classification. CoRR (2016). https://doi.org/10.48550/arXiv.1607.01759

17. Kale, D., Liu, Y.: Accelerating Active Learning with Transfer Learning. In: 2013
IEEE 13th International Conference on Data Mining. pp. 1085–1090 (2013).
https://doi.org/10.1109/ICDM.2013.160

18. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. CoRR (2017).
https://doi.org/10.48550/arXiv.1412.6980

19. Kirsch, A., van Amersfoort, J., Gal, Y.: BatchBALD: Efficient and diverse batch
acquisition for deep bayesian active learning. In: Advances in Neural Information
Processing Systems (2019)

20. Kottke, D., Schellinger, J., Huseljic, D., Sick, B.: Limitations of As-
sessing Active Learning Performance at Runtime. CoRR (2019).
https://doi.org/10.48550/arXiv.1901.10338

21. Kumar, A., Liang, P., Ma, T.: Verified uncertainty calibration. In: Advances in
Neural Information Processing Systems (NeurIPS) (2019)

22. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal Loss for Dense Object
Detection. CoRR (2018). https://doi.org/10.48550/arXiv.1708.02002

23. Liu, H., Gegov, A., Cocea, M.: Rule-based systems: A granular computing perspec-
tive. Granular Computing 1(4), 259–274 (2016). https://doi.org/10.1007/s41066-
016-0021-6

24. Nashaat, M., Ghosh, A., Miller, J., Quader, S., Marston, C., Puget, J.F.: Hy-
bridization of Active Learning and Data Programming for Labeling Large Indus-
trial Datasets. In: 2018 IEEE International Conference on Big Data (Big Data).
pp. 46–55 (2018). https://doi.org/10.1109/BigData.2018.8622459

25. Paleyes, A., Urma, R.G., Lawrence, N.D.: Challenges in Deploying Machine Learn-
ing: A Survey of Case Studies (2021)

26. Pan, S.J., Yang, Q.: A Survey on Transfer Learning. IEEE Trans-
actions on Knowledge and Data Engineering 22(10), 1345–1359 (2010).
https://doi.org/10.1109/TKDE.2009.191

27. Peng, Z., Zhang, W., Han, N., Fang, X., Kang, P., Teng, L.: Active Transfer Learn-
ing. IEEE Transactions on Circuits and Systems for Video Technology 30(4), 1022–
1036 (2020). https://doi.org/10.1109/TCSVT.2019.2900467

28. Perez, F., Lebret, R., Aberer, K.: Weakly Supervised Active Learning with Cluster
Annotation. CoRR (2019). https://doi.org/10.48550/arXiv.1812.11780

29. Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., Huang, X.: Pre-trained Models for Nat-
ural Language Processing: A Survey. Science China Technological Sciences 63(10),
1872–1897 (2020). https://doi.org/10.1007/s11431-020-1647-3

Enhancing Active Learning with Weak Supervision and Transfer Learning 41



16 L.Rauch et al.

30. Ratner, A., Bach, S.H., Ehrenberg, H., Fries, J., Wu, S., Ré, C.: Snorkel: Rapid
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Abstract. Selecting diverse instances for annotation is one of the key
factors of successful active learning strategies. To this end, existing meth-
ods often operate on high-dimensional latent representations. In this
work, we propose to use the low-dimensional vector of predicted proba-
bilities instead, which can be seamlessly integrated into existing meth-
ods. We empirically demonstrate that this considerably decreases the
query time, i.e., time to select an instance for annotation, while at the
same time improving results. Low query times are relevant for active
learning researchers, which use a (fast) oracle for simulated annotation
and thus are often constrained by query time. It is also practically rel-
evant when dealing with complex annotation tasks for which only a
small pool of skilled domain experts is available for annotation with
a limited time budget. Our code is available at: https://github.com/
sobermeier/low-dim-div-sampling.

Keywords: Active Learning · Diversity Sampling

1 Introduction

Deep neural networks are the dominant choice for solving complex tasks, such as
image classification. Their great success depends in large part on the availability
of a sufficient amount of labeled data. Especially in domains with scarce pub-
licly available data, such as medical or industrial applications, annotations can
become prohibitively expensive due to the need for skilled domain experts. The
field of active learning thus aims at reducing the number of required annotations
by intelligently selecting instances for labeling. Since modern networks require a
significant amount of training time, the traditional setting where instances are
selected one after the other [13,15,20] has become infeasible [17], and a batch-
setting is commonly applied, where a fixed number of instances is selected for
annotation.

State-of-the-art approaches [3,9,18,19,16] follow two different paradigms (or
a mixture thereof): In uncertainty-based methods [4,5,10], those instances are
selected for which the model is the least certain about the prediction. In contrast,
diversity methods [3,6,7,16,18,19,22] focus on selecting a representative subset
of instances and avoid re-labeling similar instances. In this work, we focus on
the second class.
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Diversity-based methods often rely on high-dimensional representations ex-
tracted from the model’s last layers [3,6,7,8,11,16,18,22,21]. In the presence of
a large pool of unlabeled data, processing these representations can become a
bottleneck of the approaches resulting in increased query times. While these can
often be neglected when the annotation is delegated to a large pool of on-demand
crowd workers, in settings where domain experts are required, there is often only
a small number of available annotators with tight schedules. In these settings,
it is desirable to reduce the query time in addition to only requesting useful in-
stances for annotation. Similarly, in active learning research, where a simulated
oracle is used for annotation, the computational bottleneck is often the instance
selection.

2 Diversity Sampling on Low-Dimensional
Representations

In this work, we present a simple yet effective approach to accelerate diversity-
based methods, which replaces the high-dimensional latent features x ∈ Rd

by the vector of predicted class probabilities p ∈ Rc, where usually c ≪ d.
The approach can be applied to most diversity-based methods without large
modifications and effectively reduces the instance selection times.

We empirically evaluate our approach with multiple different diversity-based
active learning heuristics. Note that we do not consider uncertainty in this work
and focus only on underlying diversity concepts. However, the selected diversity
methods are key concepts of various popular active learning strategies, such
as [1,3,16,18,22].

1. KMeansCenter selects the points closest to the centroids of k-means cluster-
ing [14] with k = q clusters for annotation, where q denotes the query size.
As a recent example, CLUE [16] uses k-means clustering as diversity concept
enriched by uncertainty weighting.

2. KCenterGreedy iteratively selects the sample with the largest minimum dis-
tance to any already labeled instance. It is also known as CoreSet [18] and
one of the first solely diversity-based active learning methods.

3. KMeans++ [2] iteratively samples instances with probability proportional to
the minimum distance to already selected points in the current acquisi-
tion round. BADGE [3] is a prominent example using KMeans++ on high-
dimensional vectors.

For the iterative KCenterGreedy and KMeans++ algorithms, we keep an array
of minimum distance to already labeled samples, and update it whenever we
add another sample for labeling. The time complexity of selecting one batch of
queries is given in Table 1. Notice that for all heuristics, the time complexity
linearly depends on the vector dimension.

We empirically evaluate the MNIST [12] dataset of handwritten digits with
10 classes and a simple 2-layer fully-connected network with embedding dimen-
sionality 256 as in [3] for a proof-of-concept. The learning rate is set to 0.01,
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Table 1. Time complexity of a single acquisition round of the different diversity-based
heuristics. q denotes the query size, i.e., number of instances to select for labeling, nl/nu

the number of labeled/unlabeled samples (nl ≪ nu), d the vector dimensionality, and
i the number of iterations until convergence.

Algorithm Time Complexity

KMeansCenter O(q · nu · i · d)
KCenterGreedy O(nl · nu · d+ q · nu)
KMeans++ O(q · nu · d)

and we train the network from scratch for 10 epochs in each iteration. The ini-
tial pool contains 100 randomly chosen samples, and we select additional 100
instances per active learning iteration until a budget of 2,500 samples is ex-
hausted. We investigate three different input features x of the samples as input
to the heuristics:

1. the full-dimensional latent features, i.e., x ∈ Rd,
2. the vector of predicted class probabilities, i.e., x ∈ Rc, where c = 10 denotes

the number of classes,
3. PCA-reduced features, i.e., x ∈ Rd′

, where d′ ≪ d is the reduced dimension.
For comparability, we use the same dimensionality d′ = c = 10 for PCA.

Our results are shown in Fig. 1. The first column shows the accuracy vs.
the number of acquired labels. We observe that using the vector of predicted
probabilities not only maintains the performance of full-dimensional latent fea-
tures but also surpasses it for all three investigated diversity-based heuristics. In
contrast, PCA-reduced latent features result in comparable performance. The
third column compares the number of acquired labels against the cumulative
query time. Using the vector of predicted probabilities generally shows the low-
est cumulative runtime. Compared to using the output vectors, PCA requires an
extra step and is therefore somewhat weaker in terms of query times. However,
using full-dimensional latent features can lead to more than four-fold increased
cumulative query time depending on the heuristic, even in this relatively small
toy setting. The second column then combines both plots and shows the accu-
racy vs. the cumulative query time, demonstrating that both label efficiency and
query times benefit from our proposed method.

3 Conclusion

In this paper, we proposed to use the vector of predicted probabilities instead of
the high-dimensional latent features as input to diversity-based active learning
methods. As a proof-of-concept, we demonstrated on one dataset that for several
diversity-based heuristics, we could strongly reduce the query time while at the
same time improving the performance. Since the predicted probabilities of the
unlabeled data are usually exploited anyway during the active learning process,
no additional computations are required.
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Fig. 1. Comparison of the different techniques for three different acquisition functions.
The first column shows the accuracy w.r.t. the number of labels, the second column
accuracy vs. cumulative query time, and the last column the cumulative query time
vs. the number of acquired labels.

For future work, we would like to investigate this promising direction fur-
ther, particularly how well the insights transfer to other datasets and how to
best combine it with uncertainty-based methods. As an interesting observation,
using samples with diverse predicted probabilities might also implicitly lead to
selecting points of diverse uncertainty.
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Abstract. The supervised training of deep learning models typically
requires vast amounts of annotated data. With active learning, the an-
notation process can be made much more efficient by intelligently se-
lecting the most valuable batches of samples to annotate and train on.
Those samples are selected based on their utility regarding the train-
ing algorithm. In this work, we examine a wide range of such selection
criteria for the task of object detection as performed by the widely ap-
plied Faster R-CNN model. We focus on the large and diverse BDD100K
autonomous driving dataset, paying special attention to evaluate the
model’s performance regarding the dataset’s meta information. Further-
more, we distinguish between approaches that select samples based on
aleatoric or epistemic uncertainty. A selection of evaluation measures
that cover specific error sources and the overall model performance sug-
gests that there is little difference between the individual active learning
approaches, even in regards to their specialized focus on different model
parts and the object detection tasks of localization and classification. We
conclude with a detailed discussion of the implied mechanisms regarding
the active learning approaches that seem to affect model performances.

1 Introduction

Data annotation is costly both in time and resources (human and computa-
tional). The theoretical advantages of using active learning lie in a more efficient
data annotation process by intelligently selecting a subset of samples that is
thought to be most useful to train the machine learning model on. In this work,
we perform a practical examination of active learning strategies, gaining insights
into why certain approaches perform better than others regarding the task of
2D object detection. This is done on the very large BDD100K [1] dataset, which
is one of the most diverse autonomous driving datasets in terms of scenarios,
weather, uncommon objects, and other attributes, applying the popular Faster
R-CNN model [2]. We describe the active learning process as a cycle of iter-
atively selecting a batch of samples to be annotated and training the Faster
R-CNN model on the annotated portion of the data, cf. Figure 1. One batch
consists of a set of images, each image containing one or more objects. The se-
lection process consists of three parts: i) an utility function which estimates the
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Selection
Utility Function
Aggregation Function
Selection Strategy

Optimization
Model Training

Acquisition
Data Annotation

Active
Learning
Cycle

Fig. 1. The typical active learning cycle consisting of data selection, acquisition of
annotations, and model training.

usefulness of each object, ii) an aggregation functions, which aggregates the use-
fulness for a complete image, and iii) a selection strategy, which selects the set
of images deemed most useful. The examined variety of active learning strate-
gies are based on the sub-tasks performed by the Faster R-CNN model, namely
the separation of the annotated objects and the background, and the precise
classification and localization of those objects. Furthermore, we consider and
compare utility functions based on aleatoric and epistemic measures of uncer-
tainty facilitated by Monte-Carlo dropout [3]. Multiple aggregation functions,
e.g., mean and quantiles, are tested for each utility function to summarize the
utilities over a whole image. We restrict the selection strategy to simply select
the top k samples, i.e., images, with the highest utilities as aggregated from the
individual object utilities for each image.

Our goal is to evaluate the practicality and benefits of utilizing active learning
strategies in the training of large object detection models and to provide prac-
tical insights into the design of the corresponding machine learning pipeline.
We present a novel utility function facilitated by the box predictions and their
intersection-over-union (IOU) and experiment with approaches based on the
different sub-tasks executed by the object detection model, i.e. utilizing the ob-
jectness, class, and box predictions of the model. We see a lack of a thorough,
realistic and foremost practical evaluation of various active learning approaches
for the task of object detection. In this work, we aim to close this gap and com-
pare the actual annotation cost of each active learning approach and discuss the
practicality and performance given the required computational effort. Moreover,
we can get further insights into why certain active learning approaches perform
better than others by examining the selection of meta-attributes, e.g. weather,
time-of-day, scene, etc., of the BDD100K dataset.

In the following Section 2, we give an overview of active learning approaches
as a whole and those specifically aimed at the task of object detection. Sec-
tion 3 introduces our methodology, including the model setup and a thorough
introduction of the examined active learning strategies. In Section 4, we provide
further information regarding the dataset, experimental design, and evaluation
measures. Section 5 discusses the experimental results, after which we summarize
our findings and presents directions towards future work in Section 6.
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2 Related Work

Active learning methods deal with the selection of data samples for annotation
and subsequent model training. Much published work on the topic of active
learning is concerned with proposing specific utility functions or selection crite-
ria. Often these are based on a Bayesian Neural Network approach or Monte-
Carlo sampling approaches through dropout [4]. Popular examples are uncer-
tainty sampling [5], and entropy based ones [6], e.g. BALD [7] and Batch-
BALD [8]. Siddahnt et al. [9] present a large-scale empirical study on deep
active learning approaches, concluding that BALD can significantly outperform
other approaches, using uncertainty estimates provided either by Dropout or
Bayes-by-Backprop. Most techniques are made for classification tasks and only
recently the spectrum of approaches was widened to encompass regression tasks
[10,11,12,13]. For a survey on further aspects to consider in active learning, e.g.
cost types and annotator performance, see [14]. As we do not consider any tem-
poral information in the object detection tasks, we do not consider stream-based
active learning methods, but instead focus on a variety of pool-based utility func-
tions building on uncertainty estimation. Methods for query-synthesis, i.e. the
generation of novel sample to annotate, are also beyond the scope of this work.

Advancing active learning methodologies towards more complex prediction
tasks, e.g., object detection and localization, requires more sophisticated active
learning approaches. Brust et al. [15] select images in an uncertainty-based ap-
proach using bounding box and class metrics. In [16], the uncertainties of both
classification and bounding box predictions are utilized, as well. Roy et al. [17]
use a query by committee approach and the disagreement between the con-
volutional layers in the object detector backbone. [18] investigates continual
learning aspects of an ensemble-based method incorporating both classification
and localization aspects for 2D and 3D object detection. Multiple Instance Ac-
tive Learning for Object Detection [19] adapts an adversarial training procedure
to select informative images for detector training by observing instance-level un-
certainty, although, this approach implicitly assumes that there is a dominating
object in each image, hence it can attach a single label to each images (as in
image classification). Haussmann et al. [20] evaluate the use of active learning
on a large scale object detection dataset for autonomous driving, although, with
a different choice of models, active learning strategies, and dataset.

The Faster R-CNN model is one of the most widely used object detection
model due its good performance and many readily available implementations.
Since the original publication of the Faster R-CNN model many improvements to
its architectural design were proposed [21]. Since most of these approaches add
more complexity to the models with minuscule performance improvements, we
only utilize an additional feature pyramid network [22], whose multi-scale feature
maps will take part in our active learning approaches. Aghdam et al. [23] perform
active learning for object detection by aggregating different pixel-level scores on
the output of a convolutional neural network, which bears resemblance to our
application of utility functions on the objectness maps predicted by the region
proposal network inside the Faster R-CNN.
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3 Methodology

This section describes the required preliminaries and individual parts of the
applied machine learning model and introduces the examined active learning
approaches. First, we briefly describe the applied object detection model, i.e.
a modified Faster R-CNN, which we augment with dropout layers to perform
uncertainty estimations, i.e. Monte-Carlo Dropout. Then the active learning ap-
proaches, consisting of individual utility functions, aggregation functions, and
selection strategies are introduced.

3.1 Faster R-CNN

The Faster R-CNN model is one of the most widely used object detection mod-
els due to it’s reliable performance and readily available implementations; but
due to it’s two-stage approach it is also one of the slowest. Accordingly, incor-
porating active learning in the training pipeline is a natural match to reduce
training times. The Faster R-CNN consists of three main parts: a ResNet [24]
backbone, a region proposal network (RPN), and the classification and regression
heads. Fig. 2 shows the three components of the model, the augmentation via
the dropout layers, as well as exemplary predictions for each sub-task utilized in
the active learning approaches.

The backbone used for features extraction consists of a ResNet50 as imple-
mented by the torchvision framework [25], followed by a feature pyramid network
(FPN) [22] to better handle objects of different scales. The FPN extracts fea-
tures at five different scales and three aspect ratios (1:1, 1:2, and 2:1), which are
all input to the region proposal network.

The region proposal network consists of convolutional layers and performs
a foreground and background classification and an initial rough localization of
potential objects. Due to the use of the FPN, this is performed at five scales (322,
642, 1282, 2562, and 5122 pixels) and three aspect ratios, resulting in a total of
15 objectness maps containing pixel wise binary classifications. The objectness
is treated as one of three model outputs, which are further utilized in the active
learning approaches.

Based on the binary classification performed by the RPN, a set of highest
scoring object proposals is selected. Together with the features extracted by the
backbone the selected object proposals are subsequently processed in separate
heads for the final object classification and localization, i.e. box prediction. Those
are the second and third model outputs on which the active learning approaches
are applied.

The dimensions of the last few layers of the Faster R-CNN need to be adjusted
to the specific learning problem posed by the dataset, i.e. the thirteen object
classes considered. The dimensions of the final fully connected layers are adjusted
accordingly. We start each experiment on a pretrained Faster R-CNN model on
the COCO [26] object detection dataset to facilitate faster learning.
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Fig. 2. Architecture of the Faster R-CNN model. The added dropout layers required
to produce uncertainty estimates via Monte-Carlo dropout are shown in purple. The
RPN is applied to all five scale dimensions output by the FPN individually. Exemplary
predictions of the objectness (rows: aspect ratio, columns: scales), class and box pre-
dictions are shown. (We will colormap the objectness maps and depict matching model
predictions in the final version)

Uncertainty Estimation Most active learning approaches are based on un-
certainty estimates provided by a probabilistic model or sampled from an aug-
mented model [27]. Typically a distinction between aleatoric and epistemic un-
certainty is done [28,29]. Aleatoric uncertainty measures the uncertainty inherent
in the data, produced by, e.g. noise, or in regards to the application it might
also encompass sources of unpredictability such as motion blur or dirty lenses.
Epistemic uncertainty measures the uncertainty of the model itself about its
predictions and is typically harder to compute. To perform active learning this
second kind of uncertainty is more useful, because one desires to select those sam-
ples, which the model struggles with, given the assumption that those samples
provide the most benefit during training. The (pseudo-) probabilities produced
by a neural network do not capture the epistemic uncertainty [28], therefore,
the model architecture needs to be extended via an appropriate uncertainty
estimation technique. We will utilize Monte-Carlo dropout as proposed in [4]
and add respective dropout layers to the Faster R-CNN. More specifically they
are added to the convolutional layers of the RPN and the classification and re-
gression heads. Dropout refers to the CNN specific 2D variant that zeros-out
entire channels, or in abstraction complete features. The model output can thus
be sampled via multiple forward passes to estimate the epistemic uncertainty
about the predictions. We draw 10 samples in each forward pass to maintain a
reasonable inference time during the active learning cycles. The dropout layers
are also kept active in those approaches that do not rely on the epistemic uncer-
tainty estimates to avoid biasing the results, because we observed slightly lower
performance while utilizing dropout, and we want to investigate the performance
differences based on the utility functions and not due to adding dropout.
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3.2 Active Learning Approaches for Object Detection

The term active learning encompasses strategies to select a subset of a given
dataset with the goal of reducing costs in data annotation and model training.
It does so in an iterative process of selecting and annotating data, and training
on the available annotated data. We term one of those iterations as a cycle. Since
we are working with the already annotated BDD100K dataset the annotation
process is simulated by taking the annotations of the selected data into account.

For the application of object detection an active learning strategy consists
of three main parts: a utility function that estimates the utility of an object or
image, an aggregation function that aggregates the utilities of all objects in an
image, and a selection strategy that selects the k most useful images.

Accordingly, one cycle consists of the model predicting object locations and
classes, the application of the utility function, the application of the aggrega-
tions function, the application of the selection strategy, annotation of the se-
lected data, i.e. moving data from the unlabeled dataset to the labeled dataset,
retraining of the model based on the labeled dataset, and checking of a stopping
criteria.

The initial condition (zeroth cycle) consist of an unlabeled dataset and the
newly initialized (pretrained) model. Stopping criteria can be based on the
amount of data that can be annotated, which might be restricted by available
resources, e.g. financial budget, or based on the model performance, e.g., when
a desired performance is reached or when the training saturates. Since we do
not explicitly consider a fixed budget in the utility functions, we simply set the
number of active learning cycles to 30 (based on the model convergence during
the experiments) and compare different approaches based on the model perfor-
mances over those iterations. The design of cost-sensitive utility functions, which
explicitly consider the sample costs during estimation of their utility is still an
open research-topic.

Utility Functions Given the model predictions about the object classes and
locations, a utility function ascribes a usefulness to each object in the unlabeled
dataset. Additionally, in case of the objectness predictions for an image, i.e. the
feature maps showing the foreground-background classifications performed by
the RPN, the utility of the entire image can be estimated directly. We further
consider an approach utilizing all three predictions, i.e. objectness, class and lo-
cation, combining multiple utility functions. The approaches based on the object
classes consist of the following measures:

The normalized entropy provides a measure of the lack of model confidence
based on the class predictions. It is obtained through normalization of the Shan-
non entropy [6] H over the maximum possible entropy log(K), which is reached
by a uniform distribution. Formally it is defined as

η(p̂) =
H

Hmax
= −

K∑

k=1

p̂k log(p̂k)

log(K)
, (1)
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where p̂ are the class predictions and K the number of classes. The predicted
class probabilities p̂k = σK(x)c are given by applying the softmax function to
the logits, i.e. the classification output of the model. The normalized entropy
produces a high value when there is a strong disagreement between the different
classes, i.e., when the distribution over the predicted classes approaches unifor-
mity. Contrary, this entropy measure will be low, when there is a single class
holding most of the distribution’s mass, i.e., when the model in confident.

BALD [7], is also an entropy based measure. It aims to select samples that are
expected to maximize the information gained about the model parameters [3].
BALD specifically utilizes the epistemic uncertainty of the model by sampling
the model output via the applied Monte-Carlo dropout technique. The sampled
predictions are clustered according to their location via an agglomerative clus-
tering based on a distance threshold of 0.5 regarding their box IOU. The BALD
utility function can then be applied to each cluster, i.e. each predicted object.
We utilize a modified version of the BALD utility function that is normalized
facilitating an unbiased combination of utility functions. Given a dataset D and
model M with parameters ωt as one of T random dropout configurations, the
computationally tractable approximation of the utility function used during the
experiments is formally given by

α(x|w) = 1

log(K)

(
−
∑

k

[(
1

T

∑

t

p̂tk

)
log

(
1

T

∑

t

p̂tk

)]
(2)

+
1

T

∑

k,t

p̂tk log(p̂
t
k)




where p̂tk is the probability of input x predicted by the model with parameters
ωt to take on class k, i.e., p̂tk = σK(Mωt(x))k. p

t
k is given by the class predictions

of the cluster. As with the entropy measure above, we normalize the BALD
equation by the maximal possible entropy log(K).

We will also apply both the normalized entropy and BALD utility functions
to the objectness maps produced by the RPN.

As a utility function based on the object box regression, we propose a novel
measure based on the Intersection-Over-Union (IOU). Similar to BALD we first
need to cluster the proposed boxes per object before we calculate the IOU of
each box within a cluster to the cluster mean, i.e., the mean box of the cluster.
Subsequently those IOU values are averaged. Because we require the utility
function to signify higher uncertainty with higher values we invert the expression
by calculating 1 - the mean IOU. The expected IOU (eIOU) is thus formalized
as

b̄c =
1

|Bc|
∑

b∈Bc

b (3)

eIOU(Bc) = 1− 1

|Bc|
∑

b∈Bc

IOU(b, b̄c), (4)
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where Bc is the set of predicted boxes per cluster c, and b̄c the mean of the
cluster. The expected IOU is normalized by definition, due to the IOU being
normalized; this is advantageous compared to using the total or generalized
variance of a cluster, because it is not influenced by the position and size of
the object proposals. For the utility function should not be biased by those
properties.

In order to evaluate a utility function utilizing all three model outputs, i.e.,
objectness, classes and boxes, we define a combined measure consisting of the
normalized BALD approach applied to the objectness and the class, together
with the eIOU.

The presented selection of utility functions comprise the most general and
widely applied approaches based on estimated model uncertainties with the ad-
dition of a similarly inspired box-based version, i.e. the expected IOU. Having
defined the utility functions, we can measure the utility per predicted object, or
pixel in case of the objectness maps.

Aggregation Functions An aggregation function summarizes the output pro-
duced by a utility function to describe the utility of a complete sample, i.e. an
entire image.

Intuitively the mean over the utility function output provides a measure of
the average utility in annotating a certain sample. The median is not a good
option as it is not influenced by outliers, e.g. objects the model is especially
uncertain about, but we want the utility measure to be explicitly influenced by
those parts of the image, assuming that these outliers are particularly interesting
and useful.

Accordingly, applying the max function gives further priority to especially
high values of the utilities produced by the utility function.

Although, simply applying the max aggregation function on the utility func-
tions applied to the objectness maps would not work well due to fact that almost
always the objectness maps contains maximum values of 1, thus every image
would be ascribed the same maximum utility. To solve this issue we ignore those
very high values by only considering the 95th and 99th percentiles.

Selection Strategies The selection strategy decides which of the samples from
the unlabeled dataset are selected for annotation, given the aggregated utilities
inferred through the application of a utility and aggregation function. We want
to train the model on those samples that are deemed most useful, naturally,
the selection strategy will simply consist of the max function over all unlabeled
samples, selecting those samples with the maximum utility as aggregate per
image. Depending on the utilized utility functions those samples are also the
ones the model is most uncertain about.
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4 Evaluation Methodology

This section details preliminary information regarding the dataset, the experi-
mental setup, and the applied evaluation measures necessary to investigate the
object detection as well as the active learning performances.

Dataset The experiments are performed on the BDD100K dataset, which is is
one of the largest object detection datasets in the autonomous driving domain. It
contains a variety of scenarios, sceneries, and annotated objects. Due to varying
conditions such as time-of-day, weather, as well as noise, motion blur, and lens
flares, the dataset poses a challenge towards current machine learning models.
This naturally befits the use of active learning techniques to select different and
useful samples, with the goal of reducing both annotation costs and training
time.

There are five object categories with overall 13 classes: bike: bicycle, motor-
cycle; person: pedestrian, rider; vehicle: bus, car, truck; distractor: other person,
other vehicle, trailer, train; signal: traffic light, traffic sign.

We perform experiments on all of the 13 classes as well as an easier subset
of three classes summarized by bike, person, and vehicle, which supported the
results on the larger set of classes. Additionally, we investigate the connection
between the available meta-attributes with the active learning approaches to see
if the approaches display certain preferences in selecting data samples in regards
to these attributes: weather: clear, foggy, overcast, partly cloudy, rainy, snowy,
undefined; scene: city street, gas stations, highway, parking lot, residential, tun-
nel, undefined; time-of-day: dawn/dusk, daytime, night, undefined; occluded:
False, True; truncated: False, True.

Experimental Design Our goal is to evaluate the individual active learning
approaches, consisting of combinations of the introduced acquisitions functions,
aggregation functions, and selection strategy. For each of those combination we
train a Faster R-CNN model for 30 active learning cycles. The pretrained model
gets trained from scratch in each cycle as to not overfit on the data annotated
the earliest, which we observed upon initial experimentation. Each experiment
is performed twice, to make sure the experimental results and discussion thereof
are reliable.

The BDD100K dataset contains 100.000 images, although, the annotations of
the original test set are not available so we took the last 10.000 images from the
training set to form an annotated test set. The splits are illustrated in Figure 3
with the original validation set, containing 10k images.

¡Through preliminary experiments the main hyper-parameters were deter-
mined. Those include: learning rate = 1e-5, batch size = 20, epochs = 10 (per
cycle), and Mish activation functions. We utilize the Ranger optimizer [30] for
faster convergence, which incorporates AdaBelief, RAdam, Lookahead, and Gra-
dient Centralization. An acquisition size of 512, i.e. the number of acquired sam-
ples after each cycle, was determined to balance a reasonable annotation cost
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unlabeledval.testtraining 20k60k 10k 10k

Fig. 3. Training, test, and validation splits of the BDD100K dataset.

and training progress on the growing annotated dataset. This means the final
models (at cycle 30) were trained on 30 ∗ 512 = 15360, which corresponds to
25.6% of the training data.

During training we utilize image augmentation by alteration of the brightness
and contrast, or by adding Gaussian noise. The augmentations are applied with a
random probability, order, and intensity (within previously determined bounds).

Performance Measures We distinguish between two kinds of measures that
evaluate the object detection performance and further aid the investigation of
the active learning approaches, respectively.

The most commonly applied evaluation measure for the task of object de-
tection is the mean Average Precision (mAP). It describes the area under the
precision-recall curve derived from the statistics of the model predictions. Since
the mAP score only provides a single number, we additionally apply separate
measures to evaluate each of 6 possible kinds of errors: class error, location error,
class and location error, duplicate predictions, background prediction, missed ob-
jects, as proposed by [31]. A predicted box is considered correct if its IOU with
the ground-truth box is higher than 0.5. To be able to compare class and location
errors independently, an additional lower IOU threshold is needed, so that if a
box is in the wrong location the classes can still be reasonably compared. This
lower IOU threshold is set to 0.1, as suggested by [31]. Arguably, predictions rec-
ognized as class or location errors could also be counted as duplicate predictions
if they can be matched to a ground-truth box, but since we want to count every
prediction only once, only otherwise correct predictions count towards duplicate
errors. By investigating the individual error sources, we can for example examine
if approaches based on the predicted classes produce less classification errors, or
if approaches based on the box predictions perform better in the localization
sub-task.

To evaluate the performance of the active learning strategies, we are not
only interested in the final model performances after 30 cycles, but also in the
annotation costs (as measured by the number of annotated objects), which are
often neglected in the current literature, and in the learning behavior over all
active learning cycles. Notably, while the same number of samples, i.e., images,
is selected in each cycle, different amounts of objects in the selected images
lead to different annotation costs of the active learning approaches. Splitting
the performance evaluation according to the available attributes is very useful
to investigate whether a model performs better on samples that are considered
more difficult, e.g., when time-of-day is night. Another assumption often made
is that difficult samples are most useful to train on and that active learning
approaches based on uncertainty measures are supposed to select those difficult
samples. To investigate if this is the case, we sort all samples by the average
mAP score over all models and compare them with the selection by the models.
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5 Results

This section presents the results of the experiments and discusses the various in-
sights into the applied active learning approaches. This encompasses three main
parts: the learning behavior, the final model performances, and the acquisition
characteristics.

The different approaches are each abbreviated by three letters, indicating:
the type of sub-task predictions used for the active learning approach, the utility
function, and the aggregation function. For example, cbm is the approach com-
prised of the BALD utility function applied to the predicted object classes and
aggregated by the mean aggregation function. See all abbreviations in Table 1.
rdm denotes random sampling, and all stands for the approach that utilizes all
three kinds of predictions, applying the normalized BALD utility function to the
class and objectness predictions, and the eIOU to the boxes.

Table 1. Active learning approaches abbreviations.

prediction utility aggregation

c class e entropy m mean
b box b BALD x max
o objectness i eIOU 5 95-percentile
a all 9 99-percentile

We first compare the various active learning approaches by considering their
performance on the test set. Fig. 4 shows the mAP performance for each cycle,
averaged over both random seeds. Remember that each cycle adds 512 images to
the labeled portion of the training set and in each cycle the models are trained
anew. With this in mind we can see that training on more data does improve the
model performances consistently for all approaches. Although, the convergent
behavior is similar for all approaches, i.e. no approach provides considerably
faster learning based on the selected data, and they all end up with around the
same performance after 30 cycles. We performed the same set of experiments with
a reduced set of annotation containing only three classes (vehicle, pedestrian, and
cyclist), resulting in very much the same performance and learning behavior.

Second, we compare the performance of the trained models after 30 cycles.
Fig. 5 shows the performance of each approach sorted by the mAP score on the
test set, and the different error sources according to the TIDE measures [31].
Again, the numbers represent the average over both random seeds. Generally,
we observe no significant differences between the active learning approaches.
Most perform slightly better than random sampling. The approaches based on
the objectness seem to perform best, for which the reason will be explored in
the next subsection. There is no clear winner between the utility functions or
the aggregation function. The performance of models trained via utility functions
based on class or box predictions, do not show a clear correlation for their specific
sub-tasks, as shown by the detailed evaluation of the different kinds of errors.

To investigate which kind of images each active learning approach acquires,
we compare the selection for each model and for each cycle for the following
object- and image-level attributes: class label, box size (5 bins, logarithmic),
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Fig. 4. Learning curves showing the mAP performances per cycle on the test set.
All approaches show similar learning behavior, although, cem, cex, and bim perform
slightly worse than the other approaches.

and the attributes presented by the BDD100K dataset. Additionally, we will
assert if the approaches select especially difficult samples, as measured by the
average mAP score of the models.

Fig. 6 shows the distribution of attributes in the training set (black dashed)
from which the active learning approaches iteratively select a subset to train
on. The attribute distributions of the selected subsets are shown for each cycle,
whereby lower cycles are blue and higher cycles are red. One would assume, that
the approaches should select a higher proportion of attributes that occur less
often in the dataset, given the assumption that those samples are probably more
difficult for the models. If this were the case, one should see a balancing between
the individual instances of the attributes, respectively.

Regarding the label distributions, the approaches mostly adhere to the train-
ing distributions, with the exception of bim and cbm, which even exaggerate the
label imbalances by selecting many images with cars in them. The approaches
based on the objectness maps show more promising behavior by selecting less
cars and more pedestrians, with the exception of the approaches utilizing the
max aggregation function. The reason being, that they practically reduce to
random random sampling due to the effect explained in Sec. 3.2. The box size
selection is very consistent between every approach, oversampling small boxes.
The weather selection looks very similar to the label attribute, with the cem
approach also oversampling the most prominent weather instance (clear). Inter-
estingly, the scene attribute shows an inverse behavior compared to the label and
weather distributions. bim and cbm select more images showing residential and
fewer showing city street. cem and cex have a similar preference towards highway
scenes. Contrary to the label selection, the objectness based approaches over-
sample city street scenes and avoid highway scenes; we will discover why when
we look at the number of acquired objects. Regarding the time-of-day, most ap-
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Fig. 5. Model performance after 30 cycles, sorted by the mAP score on the left. FN
and TPgt are in proportion to the number of ground truth, all else in proportion to the
number of predictions. There is no score threshold applied to the predictions, which is
why the percentage TPpred seems relatively low. FN: false negatives, TP: true positives,
CLS: class error, LOC: location error, CLS: class and location error, DUP: duplicate
predictions, BKG: false positives/background predictions.

proaches exaggerate the day- and night-time imbalance in the distribution by
selecting primarily day-time images, while some seem to prefer night-time images
(bim, cem). The distributions of the occlusion and truncation attributes show
no significant behavior, except for some approaches, apparent in the figure.

Contrary to the assumption, we generally observe little balancing and the
attribute distributions of the selected images mostly vary around the training
data distribution. We make the general observation that if there are deviations
from the training distributions, they are more pronounced in the early cycles
(blue), and the selection distributions are closing in on the training distributions
towards later cycles (red), often matching them in the final cycles. For the at-
tribute instances with very few sample we barely see any selection; enabling the
approaches to oversample during sample selection might help in those cases. The
attribute distributions of the data selected by random sampling (rdm, last row)
is consistent with the overall data distribution, as expected.

Another kind of attribute often implicitly talked about is the difficulty of
the samples, based on the assumption that more difficult samples are partic-
ularly useful for model training and should thus be selected by active learning
approaches; especially by uncertainty based ones if we relate uncertainty to diffi-
culty. To check this assumption we sorted all images in the training set according
to their average mAP score over all models to estimate their difficulty.

Fig. 7 shows the four kinds of behaviors observed when we look at the image
selections in each cycle over the mAP score. To create the depiction all 60k
images in the training set, sorted by their average mAP score, were binned into
128 bins, shown along the x-axis (low to high mAP, from left to right). This
includes the selection from both random seeds. The rows depict the cycles (early
to late, from bottom to top). The approaches based on the class predictions and
the BALD utility function, as well as the proposed box based eIOU approach,
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Fig. 6. Distributions of selected object and class level attributes compared to the train-
ing set distributions (black, dashed). For each active learning approach and attribute
the distributions for all cycles and both random seeds are shown. One cycles consists of
the attribute distribution of the 512 acquired images or the objects contained therein.
Early to late cycles are colored blue to red.

select difficult examples in the earlier cycles, which then diffuses towards the
region of average difficulty after the first few cycles. cbx maintained a slightly
stronger preference towards high mAP scores throughout all cycles class-based
approaches utilizing the normalized entropy utility function have a very strong
tendency to sample very easy or very difficult images, as estimated by the mAP
score. Here the focus tapers off towards later cycles as well. The approaches
based on the objectness maps show a more independent distributions over the
mAP score, with a slight tendency to not sample very difficult images. There
is barely any variation over the cycles. Lastly, some approaches show similar
random behavior as random sampling. Notably, all of those approaches use the

62 J. Schneegans, M. Bieshaar, B. Sick



A Practical Evaluation of Active Learning Approaches for Object Detection 15

Fig. 7. The four kinds of selection behaviors expressed by the active learning ap-
proaches, in regards to the difficulty of the available images, estimated by the average
mAP score of each image. It shows a two-dimensional histogram indicating the number
of images in that region of the sorted mAP score. The mAP score is sorted from left
to right, i.e. less difficult to most difficult.

max aggregation function. As already mentioned before, these approaches assign
the same maximum utility to most images, leading to a random selection.

Finally, we compare the performance of each approach with the annotation
costs of their acquired images. For this shows the actual practical applicability of
the approaches. The performance is estimated by the mAP score of the trained
models after 30 cycles. The annotation costs are estimated by the number of
objects contained in the acquired images, because annotation companies usually
calculate the annotation effort and costs per object. Fig. 8 shows both perfor-
mance and the annotation costs for each approach, relative to random sampling.
The approaches are sorted by their performance.

We observe a strong correlation between annotations costs, i.e. the number
of objects, with the model performance. If we allow for a small decrease in
performance compared to random sampling, the annotation costs can be reduced
immensely, depending on the approach. In contrast, to achieve a slight increase
in performance the annotation costs rise by about 40%. Notably, we see that the
objectness based approaches consistently acquire images with more objects.

This is consistent with our previous observations that the objectness based
approaches preferably select city street scenes with many pedestrian labels com-
pared to the usually high number of car labels, during daytime. Otherwise, the
results do not seem to correlate with the results depicted in Fig. 6 or Fig. 7. If
we compare the annotation costs with the more detailed TIDE scores, we notice
that the model performance correlates well with the overall amount of errors.

Fig. 8. cost vs performance rel. to random sampling

A Practical Evaluation of Active Learning Approaches for Object Detection 63



16 Schneegans, Bieshaar, and Sick

Overall, a high number of objects is beneficial to the model performance,
and the objectness based approaches represent a proxy to find images contain-
ing many objects. We attribute it to the observation that the objectness maps
produce high values around object edges, because there the uncertainty, whether
a pixel in the objectness map corresponds to and object, is very high. Accord-
ingly, the more objects are in the image, the more edges there will be, and the
higher the aggregated utilities are. This naturally leads to the question, whether
simply approaches like an edge detector could provide a good basis for active
learning strategies, reducing the computationally effort by a large margin. To
further note: random sampling takes drastically less compute effort, because one
does not need to estimate the uncertainties, e.g. by sampling a model multiple
times.

6 Conclusion

We applied a variety of active learning approaches to the task of object detection
on a large and varied autonomous driving dataset. The approaches, comprising
combinations of multiple utility functions and aggregations functions, utilized
different kinds of model predictions based on the sub-tasks performed by the
Faster R-CNN model. Overall, the approaches performed similarly, but showed
some differences in how they functioned. An investigation into the attributes of
the selected images lead to the observation that the objectness based approaches
perform an elaborate proxy-task to estimate the number of objects per image.
A main insight is the clear correlation between number of objects in the selected
images and performance of the models trained on them.

It remains questionable if the uncertainty based approaches evaluated in this
work justify the added complexity in the implementation and computational
costs, compared to random sampling. Therefore, active learning approaches must
further strive to be applicable to complex, real world datasets and difficult learn-
ing tasks such as object detection. Although, we discovered a promising direction
of utilizing more primitive and efficient proxy-tasks, e.g. estimating the number
of object per image, to base the active learning approaches on.

The assumption that, for example, night-time images are more difficult and
should thus be selected by active learning approaches could not be confirmed.
Which either means that the assumption is not true, which could be further
verified by looking at the error scores of individual images with the respective
attributes, or that the approaches simply do not select samples according to the
assumption.

The experiments can be extended to include more datasets and a wider range
of active learning approaches, since in the time past since the conduction of the
experiments more utility functions and active learning strategies were proposed.
Likewise, the application domain as well as the object detection task further
warrant the additional use of other sensor modalities, e.g. Lidar or Radar. We
also did not consider temporal information, e.g. video data, for stream based
active learning.
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7 Code Availability

The code base of this work is available to reproduce, verify, or extend the ex-
periments conducted for this work under https://git.ies.uni-kassel.de/

public_code/a_practical_evaluation_of_active_learning_approaches_for_

object_detection.
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Abstract. Active class selection (ACS) requires the developer of a clas-
sifier to actively choose the class proportions of the training data. This
freedom of choice puts the trust in the trained classifier at risk if the true
class proportions, which occur during deployment, are subject to uncer-
tainties. This issue has recently motivated a certificate for ACS-trained
classifiers, which builds trust by proving that a classifier is sufficiently
correct within a specific set of class proportions and with a high prob-
ability. However, this certificate was only developed in the context of
binary classification. In this paper, we employ Hölder’s inequality to ex-
tend the binary ACS certificate to multi-class settings. We demonstrate
that our extension indeed provides correct and tight upper bounds of the
classifier’s error. We conclude with several directions for future work.

Keywords: Active class selection · Prior probability shift · Multi-class
classification · Model certification · Learning theory · Validation.

1 Introduction

The proceeding deployment of machine learning models in real-world applica-
tions increases the importance of validating these models thoroughly. Ideally, the
robustness of these models against distribution shifts [5] is certified in the sense
of being formally proven or extensively tested [3].

In active class selection [4], a class-conditional data generator is repeatedly
asked to produce feature vectors for arbitrarily chosen classes. In this setting,
the developer of a classifier must actively decide for the class proportions in
which the training data set is produced. While this freedom can reduce the data
acquisition cost while improving classification performance, it also puts the trust
in the trained classifier at risk: what if the class proportions, which occur during
deployment, are not precisely known or are even subject to changes?

These uncertainties have motivated a certificate for ACS-trained classifiers,
which declares a set of class proportions to which a classifier is safely applicable
[2]. In particular, the certified classifier is required to exhibit an ACS-induced
error of at most some ϵ > 0, with a probability of at least 1 − δ. However, this
certificate was only developed in the context of binary classification; a multi-class
certificate has not yet been proposed, to the best of our knowledge.
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In this paper, we close the gap between ACS model certification and multi-
class classification. In the following, we recapitulate the theoretical background
of binary ACS certification in Section 2 before we develop our multi-class ACS
certificate in Section 3. We validate our claims empirically in Section 4 before
we conclude with Section 5.

2 Theoretical Background

The term “domain”, as used in domain adaption [6], describes a probability
density function over X × Y, where X is the feature space and Y is the label
space. In ACS, we assume that the source domain S, where a machine learning
model is trained, differs from the target domain T , where the model is deployed,
only in terms of the class proportions pS ̸= pT [2]. Such deviations, also known
as target shift [8] or as prior probability shift [5], occur due to the freedom of
choosing any pS for the acquisition of training data. We are interested in the
impact of such deviations on the classification performance with respect to T .

Recently, a PAC learning perspective [2] on this setting has provided us with
Theorem 1. This result quantifies the difference in loss values L(h) between an
ACS-generated training set D and the target domain T . Only if this difference
is small, we can expect to learn a classifier h from D that is accurate also with
respect to T , similar to standard PAC learning theory. The key insight of this
theorem is that the relevant loss difference between D and T is continuously
approaching the inter-domain gap |LT (h)−LS(h)|, which is independent of the
random draw of D from S, while the training set size m increases. In ACS, this
increase happens naturally while more and more data is actively being acquired,
so that the error of any ACS-trained classifier is increasingly dominated by this
gap. Since the inter-domain gap is constant with respect to the random draw of
the training set D, it is also independent of ϵ, δ, and m.

Theorem 1 (Identical mechanism bound [2]). For any ϵ > 0 and any fixed
h ∈ H, it holds with probability at least 1− δ, where δ = 4e−2mϵ2 , that

|LT (h)− LS(h)| − ϵ ≤ |LT (h)− LD(h)| ≤ |LT (h)− LS(h)|+ ϵ.

This theorem can be used to certify a trained classification model h with N
classes in terms of a set of safe class proportions P ⊆ [0, 1]N . By “safe”, we mean
that, during the deployment of h on T , the trained model induces, with a high
probability, at most a small domain-induced error ϵ.

Definition 1 (Certified hypothesis [2]). A hypothesis h ∈ H is certified for
all class proportions in P ⊆ [0, 1]N if, with probability at least 1− δ and ϵ, δ > 0,

|LT (h)− LS(h)| ≤ ϵ ∀ pT ∈ P.

Let pS , pT ∈ [0, 1]N be vectors with components [p•]i = P•(Y = i), which
express the probabilities of the class labels in the respective domains S and T .

Certifiable Active Class Selection in Multi-Class Classification 69



Certifiable Active Class Selection in Multi-Class Classification 3

Furthermore, let ℓh ∈ RN be a vector that represents the class-wise losses

[ℓh]i = ℓX(h, i) =

∫

X
P(X = x | Y = i) · ℓ(h(x), i) dx, (1)

as according to some loss function ℓ. The total loss of the hypothesis h is then
given by L•(h) =

∑
i∈Y [p•]i[ℓh]i = ⟨p•, ℓh⟩. Consequently the inter-domain gap

for classification problems can be expressed as

|LT (h)− LS(h)| = |⟨pT , ℓh⟩ − ⟨pS , ℓh⟩|
= |⟨pT − pS , ℓh⟩|
= |⟨d, ℓh⟩|,

(2)

where d = pT − pS is the difference between the class probabilities in the
domains S and T .

In order to certify classification models, it is necessary to calculate Eq. 2.
However, the true class-wise losses ℓh are unknown, and we can only estimate
the empirical class-wise losses ℓ̂X(h, y) = 1

my

∑
i:yi=y ℓ(y, h(xi)) from a finite

amount of labeled validation data. Therefore, our goal is to constrain Eq. 2 with
the smallest upper bound, which holds with a high probability.

For binary classification problems, the inter-domain gap can be factorized
into a product of two scalars, ∆p · ∆ℓX . Here, ∆p = |pT − pS | ∈ R denotes
the difference between class proportions and ∆ℓ = |ℓY=2(h) − ℓY=1(h)| ∈ R
denotes the difference between class-wise losses. A smallest upper bound ∆ℓ∗,
which holds with probability 1− δ, can be found for the empirical estimate ∆ℓ̂.
Therefore, by Def. 1, binary classifiers can be certified as a function of ϵ and δ,
where P is characterized by the range [pmin

T , pmax
T ] of class proportions [2].

3 Certification in Multi-Class Classification

To certify multi-class classifiers according to Def. 1, an estimation for the inter-
domain gap with multiple classes must be found. For this purpose, we will make
use of Hölders inequality [7], a fundamental inequality theorem for the study
of Lp spaces. This inequality will help us in using PAC bounds for multi-class
certification, similar to the certification of binary classifiers.

Theorem 2 (Hölder’s inequality [7]). Let (S,Σ, µ) be a measure space and
let p, q ∈ [1,∞] with 1/p + 1/q = 1, where 1/∞ = 0. Then, for all measurable
real- or complex-valued functions f and g on S,

∥fg∥1 ≤ ∥f∥p∥g∥q. (3)

With this inequality, the inter-domain gap from Eq. 2 can be transformed to

|⟨d, ℓh⟩| ≤





∥d∥1 · ∥ℓh∥∞, for p = 1, q = ∞
∥d∥2 · ∥ℓh∥2, for p = 2, q = 2

∥d∥∞ · ∥ℓh∥1, for p = ∞, q = 1

(4)
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In the following we restrict ourselves to the consideration of the Hölder con-
jugate p = ∞, q = 1. In principle, the other conjugate forms are also applicable.
However, we will see that the infinity norm on d provides a simple and intuitive
characterization of P.

In order to yield a certified hypothesis, as according to Def. 1, it must hold,
with a probability of at least 1− δ, that, for ϵ, δ > 0,

|LT (h)− LS(h)| ≤ ∥d∥∞ · ∥ℓh∥1 ≤ ϵ ∀ pT ∈ P. (5)

Like in the binary setting, only the empirical class-wise loss ℓ̂h is given.
Hence, a minimum upper bound ∥ℓh∥∗1 for the norm ∥ℓ̂h∥1, that is valid with
a probability of at least 1 − δ, must be found. Each ℓ̂(h, y) is associated with
a positive corresponding error ϵy with δy = e−2myϵ

2
y . For a given probability

budget of δ, we get the smallest upper bound ∥ℓh∥∗1 = ∥ℓ̂h∥1 +
∑N

y=1 ϵ
∗
y by

minimizing
∑N

y=1 ϵy through the optimization problem

min
ϵ1,...ϵN∈R

N∑

y=1

ϵy, s. t.

{
ϵ1, . . . ϵN ≥ τ

δ −∑N
y=1 δy = e−2myϵ

2
y ≥ 0

, (6)

where strict inequalities are realized through non-strict inequalities with some
sufficiently small τ > 0.

Let us now describe the set P of safe class proportions. In extension to the
requirement given in Def. 1, P is supposed to cover all class proportions that
are valid according to the certificate. With the minimum upper bound ∥ℓh∥∗1, we
can rearrange Eq. 5 to

∥d∥∞ ≤ ϵ

∥ℓh∥∗1
∀ pT ∈ P. (7)

By taking the infinity norm on d, ∥d∥∞ reduces to the class i which has the
largest absolute label distribution shift |[pT ]i − [pS ]i| = ∆p. In analogy to the
binary certification, the range of safe deployment proportions for a class i can
be described by [ [pS ]i −∆p∗ , [pS ]i +∆p∗] = [pmin

T ,i , p
max
T ,i ]. Here, ∆p∗ = ϵ

∥ℓh∥∗
1

is constant for all classes and represents the largest absolute shift that a class is
allowed to have to satisfy Eq. 5 with probability at least 1− δ. Therefore,

P =

{
p ∈ [0, 1]N : [p]i ∈ [pmin

T ,i , p
max
T ,i ] ∀ i ∈ {1, . . . , N} and

N∑

i=1

[p]i = 1

}
(8)

defines the set of class proportions to which the certified classifier h is safely
applicable.

Based on this approach, a variant of the certificate can be derived by modify-
ing d slightly. For this modification, the negative vector components of d are set
to zero, so that a vector d+ is formed. This variant is motivated by the obser-
vation that, by applying the norm to d, the negative loss components (falsely)
contribute as positives to the estimation of the error. Accordingly, d+ addresses
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only the positive error component and allows a more tighter estimate of the
inter-domain gap. However, since with d+ only the positive error components
are considered, the range of class proportions can no longer be expressed by
[pmin

T ,i , p
max
T ,i ] and Pd+ cannot be defined by Eq. 8. As a consequence, Pd+ is more

difficult to characterize than P.

4 Experiments

In the following evaluation, we show that the introduced multi-class certificate
indeed represents an upper bound of the inter-domain gap. Besides the correct-
ness of the certificate, the accuracy and tightness of the estimated upper bound
are inspected. Ideally, the certificates correspond to upper bounds that are both
correct and tight. To this end, we randomly subsample the data to generate dif-
ferent deployment class proportions pT while keeping P(X = x | Y = y) fixed.
To facilitate visualizations in two dimensions, we limit our evaluation to data
sets with three classes. The implementation of our configurable experiments is
available online1.

Correctness

The certificate is correct if L̂S + ϵ ≥ L̂T holds, where ϵ is the predicted domain-
induced error and L̂T is the empirical estimate of the target domain loss [2].
At this point, recognize that computing L̂T requires target domain data, which
is typically not available in ACS. This unavailability raises the desire for an
upper bound L̂S + ϵ of L̂T , which allows practitioners to assess, using only ACS-
generated data from S, whether their classifier is sufficiently accurate on T .
Our certificate is designed to provide this upper bound, and the purpose of our
experiments is to validate this claim.

Our experiments cover a repeated three-fold cross validation on six data sets
and two learning algorithms, to represent a broad range of scenarios. In total, we
have generated 216 000 certificates under the zero-one loss with δ = 0.05. Among
these certificates, only one failed, by producing an L̂S + ϵ that is larger than L̂T .
Due to the statistical nature of our certificates, δ = 0.05 would have allowed
for up to 10 800 failures. Therefore, the number of failures is much smaller than
expected. This small number of failures results from the coarse bound estimation
that Hölder’s inequality provides.

Tightness

A fair comparison between our certificates and our empirical estimate L̂T re-
quires us to take the estimation error ϵT of the baseline, L̂T , into account [2].
This necessity stems from the fact that L̂T is just an estimate from a finite
amount of data. Having access to labeled target domain data would thus yield
1 https://github.com/martinsenz/MultiClassAcsCertificates
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Table 1: Feasible class proportions ∆p∗, according to ∥d∥∞ · ∥ℓh∥1 certificates,
which are computed for a zero-one loss with ϵ = 0.1 and δ = 0.05.

data set classifier LS(h) p⊤
S ∆p∗

optdigits DecisionTree 0.100225 [0.70, 0.20, 0.10] 0.174888
optdigits LogisticRegression 0.0955851 [0.70, 0.20, 0.10] 0.19131

satimage DecisionTree 0.10647 [0.58, 0.31, 0.11] 0.2285
satimage LogisticRegression 0.106242 [0.58, 0.31, 0.11] 0.217247

pendigits DecisionTree 0.0467701 [0.70, 0.20, 0.10] 0.34621
pendigits LogisticRegression 0.160971 [0.70, 0.20, 0.10] 0.137843

eye movements DecisionTree 0.488188 [0.35, 0.26, 0.40] 0.0652661
eye movements LogisticRegression 0.515892 [0.35, 0.26, 0.40] 0.061098

shuttle DecisionTree 0.00521672 [0.15, 0.79, 0.06] 1.29197
shuttle LogisticRegression 0.0573444 [0.15, 0.79, 0.06] 0.251336

connect4 DecisionTree 0.297242 [0.65, 0.1, 0.25] 0.0700096
connect4 LogisticRegression 0.343249 [0.65, 0.1, 0.25] 0.0491499

Table 2: MAD and quartiles of the absolute difference between L̂S+ϵ and L̂T +ϵT .
data set method MAD Q1 Q2 Q3

optdigits ∥d∥∞ · ∥ℓh∥1 0.2023± 0.0954 0.1258 0.2015 0.2744
optdigits ∥d+∥∞ · ∥ℓh∥1 0.18± 0.1006 0.1009 0.1607 0.2471

satimage ∥d∥∞ · ∥ℓh∥1 0.1809± 0.087 0.1218 0.1741 0.2324
satimage ∥d+∥∞ · ∥ℓh∥1 0.1661± 0.0908 0.0999 0.1513 0.22

pendigits ∥d∥∞ · ∥ℓh∥1 0.1999± 0.1445 0.1034 0.168 0.2357
pendigits ∥d+∥∞ · ∥ℓh∥1 0.1703± 0.1452 0.0751 0.1319 0.2034

eye movements ∥d∥∞ · ∥ℓh∥1 0.5433± 0.245 0.3639 0.5239 0.7331
eye movements ∥d+∥∞ · ∥ℓh∥1 0.5207± 0.2643 0.3058 0.5006 0.7369

shuttle ∥d∥∞ · ∥ℓh∥1 0.0879± 0.0836 0.0315 0.0531 0.1203
shuttle ∥d+∥∞ · ∥ℓh∥1 0.071± 0.0792 0.0223 0.0424 0.0825

connect4 ∥d∥∞ · ∥ℓh∥1 0.5094± 0.221 0.3419 0.5167 0.6541
connect4 ∥d+∥∞ · ∥ℓh∥1 0.4331± 0.2515 0.2274 0.405 0.613
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Certified domain-induced error ϵ Tightness = |L̂S + ϵ− LT |

Fig. 1: The certified error (left) and its tightness (right), according to ∥d∥∞·∥ℓh∥1
on the satimage data set, using a logistic regression and the zero-one loss.

Certified domain-induced error ϵ Tightness = |L̂S + ϵ− LT |

Fig. 2: The certified error (left) and its tightness (right), according to the variant
∥d+∥∞ · ∥ℓh∥1 on the satimage data set, using a logistic regression and the zero-
one loss.
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an upper bound L̂T +ϵT of the true target domain error LT . We speak of a tight
bound, if L̂S + ϵ ≈ L̂T + ϵT .

For example, the prediction of the domain induced error ϵ, as according to
our certificate, can be inspected in Fig. 1. The prediction by our d+ certificate
variant is shown in Fig. 2. As we can see, the upper bound is very tight for the
area around pS . With increasing distance from pS , the estimation of the upper
bound becomes larger, and hence, the upper bound becomes coarser. As it is
expected, the variant using the d+ vector provides a finer bound of the inter-
domain gap in some regions. Tab. 2 summarizes the absolute deviations between
L̂S + ϵ and L̂T + ϵT in terms of mean absolute deviation (MAD) and quartiles
(Q1, Q2, Q3).

5 Conclusion and Outlook

Using Hölder’s inequality and considering PAC bounds, we have proposed an
upper bound ∥d∥∞ · ∥ℓh∥1, from which certificates of model robustness in multi-
class ACS can be issued. Our experiments demonstrate that this certification
is correct within a probability budget δ. Moreover, safe class proportions can
easily be described by the maximum allowable absolute deviation ∆p∗. Thus, the
certification of a multi-class ACS classifier is straightforward for the practitioner
to interpret and intuitive to understand, regardless of the number of classes
considered in the classification problem.

By decomposing the inter-domain gap into positive and negative error com-
ponents, it is possible to find estimates that bound the domain gap even more
precisely. An example is the presented d+ certification variant, which consid-
ers only the positive error components. In order to obtain even more precise
estimates, it is further conceivable to also take the negative error components
(correctly) into account. However, as already indicated by the d+ variant, the
complexity of describing the set P of valid class proportions increases with the
expression strength of the upper bound.

In future work, we plan to evaluate more precise estimates of this kind, as
well as the other bounds that are provided by Hölder’s inequality in Eq. 4. We
also plan to use our multi-class certificates as a basis for theoretically justified
data acquisition strategies for multi-class ACS, similar to the binary acquisition
strategy that is based on binary certificates [1].
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