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Preface

Science, technology, and commerce increasingly recognise the importance of ma-
chine learning approaches for data-intensive, evidence-based decision making.
This is accompanied by increasing numbers of machine learning applications
and volumes of data. Nevertheless, the capacities of processing systems or hu-
man supervisors or domain experts remain limited in real-world applications.
Furthermore, many applications require fast reaction to new situations, which
means that first predictive models need to be available even if little data is
yet available. Therefore approaches are needed that optimise the whole learning
process, including the interaction with human supervisors, processing systems,
and data of various kind and at different timings: techniques for estimating the
impact of additional resources (e.g. data) on the learning progress; techniques
for the active selection of the information processed or queried; techniques for
reusing knowledge across time, domains, or tasks, by identifying similarities and
adaptation to changes between them; techniques for making use of different types
of information, such as labeled or unlabeled data, constraints or domain knowl-
edge. Such techniques are studied for example in the fields of adaptive, active,
semi-supervised, and transfer learning. However, this is mostly done in separate
lines of research, while combinations thereof in interactive and adaptive ma-
chine learning systems that are capable of operating under various constraints,
and thereby address the immanent real-world challenges of volume, velocity and
variability of data and data mining systems, are rarely reported. Therefore, this
workshop aims to bring together researchers and practitioners from these differ-
ent areas, and to stimulate research in interactive and adaptive machine learning
systems as a whole. It continues a successful series of events at ECML PKDD
2017 in Skopje (Workshop and Tutorial), IJCNN 2018 in Rio (Tutorial), ECML
PKDD 2018 in Dublin (Workshop), ECML PKDD 2019 in Würzburg (Workshop
and Tutorial), and virtual ECML PKDD 2020 (Workshop).
The workshop aims at discussing techniques and approaches for optimising the
whole learning process, including the interaction with human supervisors, pro-
cessing systems, and includes adaptive, active, semi-supervised, and transfer
learning techniques, and combinations thereof in interactive and adaptive ma-
chine learning systems. Our objective is to bridge the communities researching
and developing these techniques and systems in machine learning and data min-
ing. Therefore, we welcome contributions that present a novel problem setting,
propose a novel approach, or report experience with the practical deployment of
such a system and raise unsolved questions to the research community.



II Preface

All in all, we accepted 10 papers (13 papers submitted) to be published in these
workshop proceedings. The authors discuss approaches, identify challenges and
gaps between active learning research and meaningful applications, as well as
define new application-relevant research directions. We thank the authors for
their submissions and the program committee for their hard work.

September 2021 Georg Krempl, Vincent Lemaire, Daniel Kottke
Andreas Holzinger, Barbara Hammer
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MetaREVEAL:
RL-based Meta-learning from Learning Curves ?
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Abstract. This paper addresses a cornerstone of Automated Machine
Learning: the problem of rapidly uncovering which machine learning
algorithm performs best on a new dataset. Our approach leverages perfor-
mances of such algorithms on datasets to which they have been previously
exposed, i.e., implementing a form of meta-learning. More specifically, the
problem is cast as a REVEAL Reinforcement Learning (RL) game: the
meta-learning problem is wrapped into a RL environment in which an
agent can start, pause, or resume training various machine learning algo-
rithms to progressively “reveal” their learning curves. The learned policy
is then applied to quickly uncover the best algorithm on a new dataset.
While other similar approaches, such as Freeze-Thaw, were proposed in
the past, using Bayesian optimization, our methodology is, to the best of
our knowledge, the first that trains a RL agent to do this task on previous
datasets. Using real and artificial data, we show that our new RL-based
meta-learning paradigm outperforms Free-Thaw and other baseline meth-
ods, with respect to the Area under the Learning curve metric, a form of
evaluation of Any-time learning (i.e., the capability of interrupting the
algorithm at any time while obtaining good performance).

Keywords: Meta-Learning · Learning Curves · Reinforcement Learning.

1 Introduction and related work

Meta-learning in machine learning refers to learning from prior experience on
other datasets than the current dataset of interest. There are many meta-learning
settings, including learning from Model Evaluations, learning from Task
Properties, and learning from Prior Models [31]. In this paper, we address
a particular setting of meta-learning in which the goal is to rapidly find an
algorithm that performs best on a new dataset. Since speed is of the essence,
rather than fully training all algorithms, we interrupt (then eventually resume)
training. Hence, we allow our meta-algorithm to switch between learning curves.

? The first author contributed most, the others are in alphabetical order of last name.
Supported by ANR Chair of Artificial Intelligence HUMANIA ANR-19-CHIA-00222.



2 Nguyen et al.

Our setting belongs to the family of meta-learning Model Evaluations
methods, which make use of pre-defined performance measures, e.g. test accuracy
and training time. One baseline approach is to select the algorithm performing
best on previous datasets, e.g. according to average rank [1, 17]. Other prior art
approaches include recommender systems for Meta-learning [7, 22,23,27,29,35],
largely dominated by Collaborative Filtering methods (e.g. Matrix Factorization).
In this line of work, ActivMetal [29] has inspired our approach. Our work is
mostly in line with [28], casting the problem as a REVEAL game, a subclass of
Markov Decision Processes.

Task Properties (meta-features) describe the characteristics of datasets.
They may include statistical information, information-theoretic measures, or
learned meta-features. In Meta-Regression, regression algorithms are used to
predict the performances of algorithms based on the meta-features of the prob-
lems (and meta-features of the algorithms). One could estimate a classifier’s
performance by exploiting relationships between the dataset properties and the
classifier’s performance [3]. Kopf et al. explored deeper the choices of measure-
ments for dataset characterization [11]. Another work made by Guerra et al. used
Support Vector Machines to predict the Performance of Learning Algorithms [8].
In general, meta-regression highly depends on the quality of the meta-features
used. Our present approach is not a Task property method, since it does not rely
on such meta-features, although they could be added in the future.

Learning from Prior Models usually focuses on transfer learning and few-
shot learning applied to deep learning models. While the former uses models
trained on source tasks as starting points to develop models for a new target task,
the latter aims at training a good model given very few training examples. Much
progress has been made in these settings with some state-of-the-art methods,
such as MAML [6], Reptile [24], MetaOptNet [12], and R2-D2 [4]. Our method
does not leverage prior models, although this could be done in future work.

The setting considered in this paper is active meta-learning, where an agent
actively requests to train and test algorithms to reveal their performance on a
given dataset. We fuse three ideas: (1) that of “active meta-learning” exploited in
ActivMetal [29], that of using Reinforcement Learning exploited in [28] by framing
the meta-learning problem as a REVEAL game, and that of learning from partial
learning curve information used in Freeze-Thaw, proposed for hyper-parameters
optimization and model selection [30] (without any meta-learning).

Compared to previous approaches, we gain in speed and accuracy: Both
ActivMetal and REVEAL are computationally demanding since they require
fully training and evaluating models. Our new method using partially trained
models (along the learning curve) is thus more effective. Furthermore, ActivMetal
requires multiple computationally expensive matrix factorizations using the
entire meta-dataset of past scores. Our method based on pre-trained policies
does not require storing and using past scores on other datasets at utilization
time. Finally, Freeze-Thaw, which inspired us to use learning curves, relies on
heuristic policies derived from human expertise, not trainable agents performing
meta-learning, which is the setting considered in this paper. Other learning-curve

2 M. H. Nguyen, I. Guyon, L. Sun-Hosoya, N. Grinsztajn



MetaREVEAL 3

based methods [13–15] rely on pairwise comparisons of algorithms, which would
not scale well with the number of algorithms and involve“hard-coded” policies
(no meta-learning). Our principal contributions are:

1. We introduce meta-learning environments using learning curve informa-
tion with two reward functions specifically designed for Fixed-time learning
and Any-time learning. These two types of learning are described in Section
3.1 and Section 3.2.

2. We implement and evaluate various RL agents and baseline methods
on a meta-dataset from the AutoDL challenge [19] and a novel artificial
meta-dataset. We experimentally show that RL agents can “meta-learn” the
underlying structure of training meta-datasets to later solve similar learning
tasks more efficiently.

3. We propose a Switching Frequency (SF) metric to quantify how often an
agent pauses running an algorithm and switches to running another one during
an episode. This metric is related to the trade-offs between exploitation and
exploration. We study the correlation between this metric and the cumulative
reward achieved by the agents.

2 Mathematical statement of the problem

2.1 Meta-learning as algorithm recommendation

Meta-learning is learning to learn. In this paper, we consider the algorithm
recommendation setting of meta-learning: The goal is to find, from a set of
algorithms, the algorithm performing best on a new dataset, given the experience
of these algorithms on previous datasets. This experience can be embedded in a
meta-dataset.

Definition 1. (Meta-dataset). A meta-dataset of m algorithms on n datasets
can be expressed as a performance matrix P with a size of (m×n), where column j
(for j = 1, ..., n) corresponds to algorithm Aj , row i (for i = 1, ...,m) corresponds
to dataset Di, and P (i, j) is the performance score of Aj tested on Di.

Definition 2. (1D Meta-Learning Problem). Given a meta-dataset P with a size
of ((m− 1)× n), a new dataset Dm, and the partial performance information Im
of algorithms on this new dataset Dm (which is progressively revealed at a given
cost), the meta-learning problem is to find the best algorithm Aj∗ for Dm such
that:

j∗ = argmax
j=1,...,n

P (m, j) (1)

From Definition 1, we concentrate on zero-level meta-learning, as defined
in [18]. Meta-learning algorithms are categorized in 3 families, related to the
taxonomy of [31] into Model Evaluation, Task Properties, and Prior Models, but
based on the level of information used:

MetaREVEAL: RL-based Meta-learning from Learning Curves 3
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– Zero-level meta-learning, or black-box meta-learning: Only past perfor-
mances of Model Evaluations (e.g., accuracy score on datasets).

– First-level meta-learning, or gray-box meta-learning: Performance scores,
dataset meta-features (i.e. Task Properties) and/or algorithm hyper-parameters.

– Second-level meta-learning, or white-box meta-learning: First and second
level information is complemented by full knowledge of the datasets and inner
functioning of the algorithms (related to the notion of Prior Models).

From Definition 2, we concentrate on 1D meta-learning. Meta-learning was
divided into 1D meta-learning and 2D meta-learning in [28]. In 1D meta-learning,
a search for the best algorithms for a single dataset at a time is performed. In
2D meta-learning, good matches of algorithm-dataset pairs {Di, Aj} are seeked
over the 2D score matrix (initialized with many missing values).

2.2 REVEAL games

In this section, we relate meta-learning problems to REVEAL games, which has
been previously discussed in [28]. Meta-learning problems, in the recommendation
setting introduced in the previous section, can be cast as REVEAL games, a
particular class of Markov Decision Processes (MDP), amenable to Reinforcement
Learning [28]. Since we will be using this framework, we first briefly recall what
REVEAL games are.

In a REVEAL game, the agent’s action can only influence the amount of
information it can gain, not the underlying data generative process, i.e., the
agent’s actions have no influence over the course of the “world”. Consequently,
a good operational test of whether a MDP is a REVEAL game is to find out
whether it is possible to pre-compute all states and rewards a priori, before the
start of a game episode. A simple metaphor for a REVEAL game is a “game
board” covered with “cards”. Each card is associated with some information.
When the game starts, all cards are placed face down, such that the information
is hidden from game players or agents. The goal of an agent is to move around
the board and reveal the card’s information to maximize rewards received in
an episode. Examples of REVEAL games include Battleship [32], Mouse in a
maze [2], Minesweeper [33], Pacman [34] without ghosts, etc. One example of a
game that is not a REVEAL game is the Pacman but with ghosts because the
agent’s moves affect the motions of the ghosts.

Meta-learning problems can be viewed as REVEAL games where a new
dataset corresponds to a new board. An action of the agent on the board is
a choice of pair {training algorithm, dataset} yielding a reward based on the
performance achieved by the chosen algorithm on the chosen dataset. Figure
1 shows an overview of how a meta-learning problem is related to a REVEAL
game.

As an additional twist, “cards” in REVEAL games can be partially or progres-
sively revealed. This metaphor portrays well the case in which learning machines
are progressively trained, and revealing a card step-by-step corresponds to ob-
taining the next performance of the algorithm after training one more epoch.

4 M. H. Nguyen, I. Guyon, L. Sun-Hosoya, N. Grinsztajn
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Fig. 1: Meta-learning as a REVEAL game where agents progressively reveal
the performance of algorithms on a given new dataset and try to find the best
algorithm for that dataset as fast as possible.

Concerning the meta-datasets, this corresponds to adding one more dimension
(time or number of epochs) in the meta-dataset performance matrix to store an
entire learning curve as opposed to a single final score, as explained further in
the next section.

3 MetaREVEAL

In this section, we introduce RL-based meta-learning from learning curves,
which are an essential ingredient for time management in the search for the
best performing algorithm. Indeed, training all algorithms fully (to the point of
reaching asymptotic training performance) is wasteful, considering that the least
promising algorithms can be abandoned early on. Given a limited time budget,
it is therefore preferable to probe first the performance of algorithms by training
them only a few epochs, then eventually train more certain algorithms, perhaps
switching back and forth as more of the learning curve is revealed. The goal
of our RL agent is to uncover an optimal strategy, monitoring exploration and
exploitation.

We investigate two settings, which have implications in the time management
and the exploration-exploitation tradeoff: Fixed-time Learning and Any-time
Learning. In the Fixed-time Learning setting, an overall time budget is given,
and the goal of the agent is to find the best algorithm before the time is out.
The agent can therefore explore freely within this time budget, without the need
to find a good solution early on. In contrast, in the Any-time Learning setting,
the agent can be stopped and judged for its performance at any time. There is
therefore pressure on the agent that it finds a good solution early on and keeps
improving it incrementally. Figure 2 shows a concrete example of two algorithms
competing to show the difference between Fixed-time learning and Any-time
learning settings. We introduce meta-learning environments designed for each
setting.

MetaREVEAL: RL-based Meta-learning from Learning Curves 5
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Fig. 2: Fixed-time learning versus Any-time learning. In Fixed-time learn-
ing, within a time budget T = 180 seconds, algorithm B obtained a higher final
test accuracy score (0.9) than algorithm A (0.8), making algorithm B the winner
in this setting. However, in Any-time learning, we use the Area under the Learn-
ing Curve (ALC) metric to compare. Thus, algorithm A clearly outperformed
algorithm B in this setting. If both algorithms were to stop at any point in time,
algorithm A would most likely achieve better performance than algorithm B,
indicating that algorithm A possesses a greater capacity for any-time learning.

3.1 Fixed-time Learning

In the Fixed-time Learning scenario, an agent is given a total time budget T to
be spent on training any algorithm in the algorithm set A. The agent’s goal is
to find the best algorithm for a given dataset within the time budget. T may
be varied to have the agents exposed to different conditions (e.g., T is drawn
uniformly from a pre-defined set of time budgets).

Definition 3. (State). A state st is a matrix of dimensions 2×n, which consists
of two channels represented by two vectors with the same length of n. The first
vector T stores the amount of time that has been spent so far for each algorithm
and the second vector V represents the current test score of each algorithm
(current value on the learning curve) in the current episode:

T = [tj ] for j = 1, ..., n (2)

V = [vj ] for j = 1, ..., n (3)

where n is the number of algorithms. At the beginning of an episode, all values of
tj are initialized to 0 and vj to −1, to indicate that performances of algorithms
Aj have not been revealed yet.

Definition 4. (Action). An action is to start/continue training an algorithm in
a fixed amount of time ∆t (pre-defined by the environment creator, e.g., ∆t = 10

6 M. H. Nguyen, I. Guyon, L. Sun-Hosoya, N. Grinsztajn
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seconds) and then make predictions on the test data to receive the next test score.5

For simplicity, we define an action by the corresponding algorithm index:

at = j, (4)

where j is the index of the algorithm Aj which is going to be trained and tested
next. Once the action at is done, tj and vj in the state are updated to form the
next state.

Definition 5. (Fixed-time Learning Reward Function). A shaping reward func-
tion based on performance improvement, which gives rewards more frequently to
the agent and lets the agent knows that it is getting better and getting closer to
the best algorithm:

r(t) = V ∗(t)− V ∗(t−∆t) , (5)

where V ∗(t) and V ∗(t−∆t) are the best algorithm performances found in this
step and the previous step respectively:

V ∗(t) = max
k≤t

V (k) , (6)

V ∗(0) = 0 , (7)

Definition 6. (Termination condition). An episode ends when T is exhausted.

At the end of the episode, the cumulative reward is equal to V ∗(T ) −
V ∗(0) = V ∗(T ), the score of the best algorithm found within the time
budget T . Our agent therefore implements a meta-algorithm whose (meta-
)learning curve is given by V ∗(t), but it is judged only by its end result.

3.2 Any-time Learning

In the Any-time Learning setting, we want to encourage the agent to obtain
a meta-learning curve, which is steep at the beginning, i.e., to uncover good
algorithms as fast as possible. In this way, even if the agent is stopped early,
we will get as good performance as possible, thus obtaining Any-time Learning
capabilities.

States, actions, time budgets, and termination conditions are defined similarly
as in Fixed-time learning. We designed a specific reward function for this type of
learning:

5 Agents’ action are based on the test performance Vj , which is assumed to be accurate
and a good approximation of the generalization error (i.e. we assume large test
sets and very small error bars). In this work, we focus on meta-learning, hence, the
problem of possibly “overfitting/underfitting the test set” is not discussed in this
paper and left for future works.

MetaREVEAL: RL-based Meta-learning from Learning Curves 7
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Fig. 3: Computation of the ALC.

Definition 7. (Any-time Learning Reward Function). This function puts more
emphasis on performance improvement at the beginning of an episode. The reward
is defined by:

r(t) = [V ∗(t)− V ∗(t−∆t)] [(T − t)] (8)

The weight [(T − t)] is the only difference compared to the reward function
in Fixed-time Learning. If we scale the x-axis logarithmically then the reward
function becomes:

r(t) = [V ∗(t)− V ∗(t−∆t)] [(1− t̃)] (9)

with

t̃ =
log(1 + t/t0)

log(1 + T /t0)
(10)

The larger t0 is, the more important the beginning of the learning curve is.
If T � t0, then t̃ → 0 and the reward function becomes equivalent to that of
Fixed-time Learning (Equation 5). In our experiments, t0 is set to 50 (seconds).

At the end of the episode, the cumulative reward will be the Area under
the Learning Curve (ALC) within the time budget T . The computation of
the cumulative reward can be carried out by integrating the learning curve using
horizontal rectangles, in the style of Lebesgue integrals (Figure 3). The ALC
metric was used in the AutoDL challenge with the same purpose of emphasizing
Any-time Learning [20,21].

4 Experiments and Results

In this section, we first describe how the meta-datasets used in our experiments
are obtained. Then, we discuss the experimental results and findings from running
the implemented RL agents and baselines on the meta-datasets. The code for
reproducing the experiments is available on our Github repository 6.

6 https://github.com/hungnm2008/metaREVEAL.git

8 M. H. Nguyen, I. Guyon, L. Sun-Hosoya, N. Grinsztajn
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4.1 Meta-datasets

We use learning curves collected from the AutoDL Challenge [20] to build our first
meta-dataset. However, since this meta-dataset is quite small and not complete,
we generate artificial learning curves using parameterized sigmoid functions. Both
of them will be discussed in detail below.

Learning curves from the AutoDL challenge [20]. This meta-dataset
is made by the predictions of 13 Automated Deep Learning algorithms on 66
datasets in the AutoDL Challenge [20]. These algorithms include top 9 algorithms
and 4 baselines competed in the challenge. The fact that we use a meta-dataset
from the AutoDL challenge might cause a misunderstanding that our method is
comparable to the methods competed in the challenge. However, we are doing
one level up, meta-learning from past performances of these AutoDL methods.
The score used in the challenge is the Area under the Learning Curve (ALC)
computed using the Normalized Area Under ROC Curve (NAUC) scores gathered
during the learning process. The NAUC score is obtained by making predictions
on the test set at any timestamp during 20 minutes. One difficulty is that each
algorithm in the meta-dataset made predictions at different timestamps while
our agents do it regularly every ∆t seconds. Thus, some data points on the
learning curves at desired timestamps are not available to the agents. In this
case, the learning curve’s most recent value (data point) will be returned. The
learning curves obtained from the AutoDL challenge are not monotonic. During
the competition, some algorithms’ performances decrease after some time of
training.

Fig. 4: (AutoDL meta-dataset) Hierarchically-clustered heatmap showing
nauc mean score of algorithms on datasets in the AutoDL meta-dataset. The
figure demonstrates that there is some structure in the data, which can potentially
be exploited by the learning agents. The ‘blocks’ indicate that some algorithms
are more suitable for solving some dataset tasks. This is some transferable knowl-
edge that the agent can learn.

Artificial Learning Curves. We have created an artificial meta-dataset that
contains learning curves of 20 algorithms on 100 datasets. The purpose of creating

MetaREVEAL: RL-based Meta-learning from Learning Curves 9
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these curves is to have a meta-dataset with a larger size, no missing data, and
containing underlying structure indicating some groups of algorithms are good for
some groups of datasets. We assume these learning curves have the S-shape-like
sigmoid curves, hence, they are monotonically increasing by definition. Each
learning curve of algorithm Aj on dataset Di is a sigmoid function defined by
three parameters a, b and c as follows:

lcij =
a

1 + e−b∗(x−c)
(11)

These parameterized functions allow us to experiment with various learning
curves, by adjusting their asymptotic performance (specified by a), increasing rate
(specified by b), and “warm-up” time (specified by c). Values of each parameter
a, b, and c are shown in matrices in Figure 7. Each matrix was constructed from a
matrix factorization, which means it was obtained as a product of three matrices
UΣV where U and V are random orthogonal matrices and Σ is a diagonal
matrix of “singular values”. The values are then scaled to desired range for each
parameter.

(a) Parameter a (a) Parameter b (a) Parameter c

Fig. 7: (Artificial meta-dataset) Hierarchically-clustered heatmaps showing values
of the three parameters used to build the artificial learning curves. Blocks
appear, revealing that some groups of algorithms have correlated parameter
values on groups of datasets (e.g. learning curve asymptotic value, controlled by
the parameter a). The learning agents are expected to learn such properties and
output an effective search strategy.

4.2 Reinforcement Learning Agents

In Reinforcement Learning, the goal of an agent is to find a policy that maximizes
expected (discounted) rewards. Reinforcement Learning methods can be catego-
rized into value-based, policy-based, and hybrid methods. Value-based methods
learn a value function that is used to evaluate a state or a state-action pair. Then
the policy is derived directly from the value function. In contrast, policy-based

10 M. H. Nguyen, I. Guyon, L. Sun-Hosoya, N. Grinsztajn
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methods explicitly learn a representation of a policy and keep updating it during
learning. Many hybrid approaches learn both value function and a policy simulta-
neously gain great success in RL. Actor-Critic is a well-known architecture used
in these hybrid approaches, where the “Critic” computes estimated values and
the “Actor” updates the policy according to the values provided by the Critic.
We have chosen a diverse group of RL agents due to their characteristics and
their strategies to be evaluated in our experiments:

Double Deep Q Networks (DDQN) [10]: value-based, off-policy, ε-
exploration strategy.

Soft Actor-Critic (SAC) [9]: hybrid (actor-critic architecture), off-policy,
entropy-based exploration strategy.

Proximal Policy Optimization (PPO) [26]: hybrid (actor-critic architec-
ture), on-policy, entropy-based exploration strategy.

4.3 Baselines

We compare the performance of RL agents with established baseline methods,
which allow us to select an algorithm that should perform well on a novel dataset.

Freeze-Thaw Bayesian Optimization. [30]. This method aims at efficiently
searching for good model hyper-parameters. It maintains a set of “frozen” models
that are partially trained and takes advantage of the partial information to
decide which ones to “thaw” and resume training. This avoids spending too
much time on bad models, and only promising models should be exploited more.
Freeze-Thaw requires hyper-parameters to be able to search for good models.
However, we are working on Zero-level meta-learning, hyper-parameters are not
considered in choosing an algorithm (model). We made some changes to make the
Freeze-Thaw method able to run in our experiments. The performance matrix
has been arranged so that similar algorithms are placed together. Then we use
the algorithm index as a “hyper-parameter” that describes and represents the
locality of the algorithm in the searching space.

Average Rank. Inspired by these works [1, 5, 16, 17], we build a global
ranking of algorithms across training datasets. This is done in the training phase
by running all algorithms for all training datasets and taking the average of their
ranks to form the final ranking. The global average rank for each algorithm Aj is
obtained by:

global rank(Aj) =

∑Dtrain
i=1 rankij
Dtrain

(12)

where D is the number of training datasets, and rankij is the rank of algorithm
Aj on the dataset Di. Given a new test dataset, only the algorithm with the
highest global rank is selected to run with the entire time budget T . This baseline
is very time-consuming in practice since it needs to try all algorithms on all
datasets in training.

Best on Samples. This baseline is adapted from [25] by using a fixed amount
of time tsampling instead of a fixed number of samples. At the beginning of each
episode, it trains each algorithm with the same amount of time tsampling and then

MetaREVEAL: RL-based Meta-learning from Learning Curves 11
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selects the one that performed best within tsampling to run with the remaining
time budget. In our experiments, we set tsampling = ∆t.

Random. This baseline performs a random search over the algorithm space.
Each action is to randomly choose an algorithm for training and testing within
∆t. This baseline has a very large variance. When we report results, we first
average results over 5 trials of the random search method, therefore reducing its
variance, and report average performance. One needs to bear in mind though
that this is just for comparison purposes and in not a realistic setting (because
in practice one would not average over several runs, this is impossible because
once the performances of algorithms are revealed, one cannot take them back).

4.4 Setup and Evaluation Metrics

We train the agents in two learning scenarios: Fixed-time Learning and Any-
time Learning using two meta-datasets: the AutoDL meta-dataset and the
Artificial meta-dataset. Since these meta-datasets are quite small, we use
k-Fold Cross-Validation with k = 4 to train and test the agents.7

To compare the agents, we use two metrics: Average Cumulative Reward
and Average Switching Frequency (defined in Definition 8). The means of
cumulative reward and switching frequency are calculated for each test fold.
The final average cumulative reward, average switching frequency, and their
corresponding standard deviations are computed over all folds.

Definition 8. (Switching Frequency). We proposed a Switching Frequency (SF)
metric for evaluating how frequently an agent switches between algorithms. In an
episode, the SF value of an agentk is defined as:

SF (agentk) =

∑T
t=1 1at 6=at−∆t

T /∆t (13)

with T is the total time budget, ∆t is the amount of time spent for an algorithm
in one step.

4.5 Results

We discuss our experimental results in two learning scenarios and focus on two
points: (i) the average cumulative reward and (ii) the correlation between average
cumulative reward and average switching frequency.

Any-time learning, (Figure 8a, 8c, 10a, 9c). The results indicate that a
good strategy to be successful in Any-time learning is to bet at the beginning
on algorithms that performed well on past datasets and stick to them to climb
the learning curve fast, then start exploring. This is illustrated by the ppo agent,
which obtained the highest cumulative reward, followed by other RL agents.

7 This violates the assumption that we have large test sets made earlier and is a
limitation of this mode of evaluation.
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(a) Cumulative reward in Any-time
learning

(b) Cumulative reward in Fixed-time
learning

(c) Correlation between Switching
frequency and Cumulative reward in

Any-time learning

(d) Correlation between Switching
frequency and Cumulative reward in

Fixed-time learning

Fig. 8: Experimental results on the AutoDL meta-dataset. Time budget T is
drawn uniformly from [200, 300, 400, 500] (seconds) and ∆t is set to 10 (seconds).
From the bar plots, it can be seen that RL agents (in blue color) outperformed
baselines in both learning settings, more significantly in the Any-time learning.
These RL agents tend to have very low switching frequency, as shown in the
scatter plots. In Any-time learning, the average rank agent has a high error bar
because the algorithm chosen by the agent does not consistently perform well at
the beginning of an episode. To stress that the “random” agent is an average
over 5 random runs, we highlight its bar in gray. Its total variability is higher
than suggests the 4-fold error bar represented in sub-figures (a) and (b).

MetaREVEAL: RL-based Meta-learning from Learning Curves 13
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(a) Cumulative reward in Any-time
learning

(b) Cumulative reward in Fixed-time
learning

(c) Correlation between Switching
frequency and Cumulative reward in

Any-time learning

(d) Correlation between Switching
frequency and Cumulative reward in

Fixed-time learning

Fig. 9: Experimental results on the Artificial meta-dataset. Time budget T
is drawn uniformly from [500, 700, 900, 1100] (seconds) and ∆t is set to 20
(seconds). In Any-time learning, RL agents and average rank agent achieved
similar cumulative rewards and higher than the rest of the baselines. These agents
do not switch algorithms frequently as the others, as shown in the scatter plots.
In Fixed-time learning, within the given time budget T , all agents performed
almost the same.

14 M. H. Nguyen, I. Guyon, L. Sun-Hosoya, N. Grinsztajn
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They are among the algorithms with the lowest switching frequency. Their low
switching frequency can explain their success at the beginning of the learning
curve, as they favor more exploitation than exploration. In contrast, the policy
of best on samples and freeze thaw forces agents to try each algorithm at
least once at the beginning (train and test the algorithm in ∆t first seconds).
Thus, if they manage to find the best algorithm, this should happen only near
the end of the episode, which makes it less valuable in the Any-time learning
setting. This explains why they performed worst in the Any-time learning setting
in both meta-datasets. We vary the value of t0 to investigate its influence on
agents’ performances. More precisely, the value of t0 is drawn from the set:
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512], while the time budget T is set to 512. The
results of this experiment are shown in Figure 10.

(a) AutoDL meta-dataset (b) Artificial meta-dataset

Fig. 10: Tuning hyperparameter t0 in Any-time learning. We compare the average
accumulated reward of RL agents (in blue) and baseline methods (in orange).
The x-axis shows the value of t0 on a log scale. In Any-time learning, changing t0
leads to changing the reward function. Thus, the purpose of these figures is not to
show that agents achieve higher rewards when t0 increases. The key finding is that
the performance difference between RL agents and baseline methods gets larger
as t0 increases, indicating that RL agents can learn better when we emphasize
more on the any-time learning capability (with a high value of t0). The difference
is more obvious in the Artificial meta-dataset, which can be explained by the
chosen time budget T . In the AutoDL meta-dataset, the time budget T of 512 is
large enough for the baseline methods to maintain the difference with the RL
agents when t0 increases, which is not the case in the Artificial meta-dataset.

Fixed-time learning, (Figure 8b, 8d 10b, 9d). In both meta-datasets, the
winner is a RL agent. In the AutoDL meta-datasets, RL agents achieved higher
cumulative rewards than the baselines. However, in the Artificial meta-dataset,
there was no significant difference between all agents. Within the given time
budget T , all agents managed to find a good algorithm at the end. This emphasizes
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the fact that learned policies to manage time budget are mostly beneficial in the
Any-time learning setting, where monitoring the exploration-exploitation tradeoff
is critical.

Comparison between datasets. The AutoDL meta-dataset has a clear
block structure in the vertical (dataset) direction, which means there is some
algorithm ranking transferable across datasets in the same group. The fact that
RL agents outperform others in both any-time and fixed-time learning indicates
that the RL agents successfully meta-learn those rankings, which let them finds
the best algorithms for similar datasets with less exploration than other agents
that cannot meta-learn (best on samples, freeze-thaw, random or average-rank
that uses the same ranking for all datasets), this make RL agents shine even
more in any-time learning. The structure of the artificial dataset is more subtle
and harder to learn, as it appears. More work needs to be done to fully elucidate
this.

5 Conclusion

Meta-learning can be viewed as a sequential decision-making problem where an
agent selects and trains algorithms progressively for a given dataset. The goal
is to find the algorithm performing best within a fixed amount of time (Fixed-
time learning) or at any time (Any-time learning). We have proposed learning
environments that allow RL agents to learn policies (as opposed to hard-coding
them) using past experiences on similar datasets (meta-learning). Trained agents
operate by training algorithms step by step, thus revealing their learning curves.
By doing so, they create a meta-learning curve from the performance of the best
algorithm revealed so far.

Both knowledge from past dataset experience (captured in the learned agent
policy), and current information on the dataset at hand (embedded in the current
state) are used by agents to make decisions. By leveraging partial learning curve
information, an agent may stop training algorithms that are not promising and
concentrate hardware resources on an algorithm that has more potential to be the
best-performing one on the given dataset, which would save a huge amount of time.
In both Any-time and Fixed-time learning, the RL agents successfully acquired
two important skills: (1) Meta-learning, which allows trained RL agents to identify
good algorithms with less exploration for new datasets thanks to the previous
training, this is more prominent in Any-time learning; (2) Exploration-exploitation
trade-off, which explains the different policies they derive in Fixed-time and
Any-time settings. In Any-time learning, RL agents obtained a higher cumulative
reward (Area under Learning Curve) than the baselines. In contrast, in Fixed-
time Learning, all methods obtain a similar cumulative reward (best final score).
From a RL perspective, this outlines that the Any-time learning problem offers
more possibilities to learn clever policies monitoring the exploration-exploitation
trade-off. When the number of algorithms increases, MetaREVEAL with RL
agents would show more advantages over the baselines in terms of computational
time (e.g. the average rank agent needs to try all algorithms on the training
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datasets). In addition, if we have numerous sets of hyperparameters of the same
model, we can adapt MetaREVEAL to work with continuous action spaces, which
would be more efficient in searching for the optimal set of hyperparameters.

Future work includes performing more experiments on the artificial data,
varying its parameter settings, to elucidate relationships between data structure
and policy learning. Work is also under way to apply our method to other real-
world meta-datasets. Systematic experiments must be performed to vary values
for the parameters of our meta-learning RL environments: T and t0. Last but
not least, it would be interesting to do some theoretical research and propose
RL methods more dedicated to the meta-learning REVEAL game setting and
investigate the computational complexity of such methods. We would also like
to extend this work to the First-level meta-learning, Second-level meta-learning,
and 2D meta-learning problems.

A Appendix A - Full Experimental Results

Table 1: Average Cumulative Reward achieved by each agent in each set-
ting. Since we are using k-fold cross-validation (k=4), we compute the mean of
cumulative reward in each test fold. The final average cumulative reward and
standard deviation (represented by the error bar) are computed by taking the
average across the test folds (4 test folds in total). Bold numbers indicate the
winners in each setting. RL agents performed better than the baselines in all
settings, but more remarkably in Any-time learning.

Any-time learning

(acc reward = ALC(T ))

Fixed-time learning

(acc reward = V ∗(T ))

AutoDL Artificial AutoDL Artificial

RL

agents

ddqn 0.68± 0.03 0.59± 0.01 0.84± 0.06 0.83± 0.03

sac 0.62± 0.08 0.56± 0.03 0.84± 0.06 0.77± 0.05

ppo 0.69± 0.04 0.55± 0.04 0.85± 0.05 0.77± 0.06

Baselines

freeze-thaw 0.42± 0.05 0.41± 0.02 0.73± 0.08 0.82± 0.02

average rank 0.45± 0.25 0.57± 0.03 0.80± 0.06 0.75± 0.03

best on samples 0.38± 0.08 0.41± 0.02 0.55± 0.10 0.78± 0.02

random 0.52± 0.05 0.44± 0.02 0.78± 0.04 0.81± 0.03
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Abstract. Uncertainty sampling is one of the main approaches in deep
active learning. In the early phase of uncertainty sampling, uninforma-
tive instances are usually selected due to missing exploration of the data
space. This can result in a poor quality model leading to poorer ac-
quisitions and further leading to a poorer model. Clustering algorithms
can analyze large amounts of unlabeled data in an unsupervised way.
A cluster center can be seen as the representative of its cluster and is
often highly useful for querying the label from the oracle. Therefore, we
propose an algorithm that enables the model to explore the data space
at the initial stage using pre-clustering, and enhances the exploration
of uncertainty sampling continually based on a combination of uncer-
tainty and utility metrics. The preliminary experimental results show
that the proposed algorithm supports balance and imbalanced data sce-
narios. Besides, our algorithm can achieve a higher classification accuracy
compared to baselines methods, even under fewer annotations.

Keywords: Active Learning · Deep Active Learning · Bayesian Neural
Network · Uncertainty Sampling · Clustering.

1 Introduction

Deep learning (DL) has a strong learning ability to process high-dimensional
data and extract features automatically [24], while DL is often very greedy for
data [11]. Active learning is concerned with reducing annotation costs effectively
and ensuring a predetermined level of accuracy. However, a major challenge in
AL is its lack of scalability to high-dimensional data [29]. Therefore, an approach
that combines DL and AL will significantly expand their application potential.
This combined approach, referred to as deep active learning (DAL), mainly con-
tains two parts: the AL query strategy on the unlabeled data set and the DL
model training [24]. In the pool-based AL scenario, the selection strategy chooses
the best sample based on the evaluation and ranking of the entire large data set.
The annotated samples are used to train the model and improve the data ac-
quisition for the next AL iteration. The uncertainty-based approach is one of
the most common pool-based methods in the application, because it is simple in
form and has low computational complexity [24]. Many DAL [1, 10, 22, 23] meth-
ods use the uncertainty sampling (US) strategy directly. However, there are still
two challenges that have to be overcome:
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– Unreliable uncertainty at the initial AL phase Uninformative in-
stances are usually selected based on unreliable uncertainty due to an unclear
sense of the data space at the early stage. This can result in a poor quality
model leading to poorer acquisition and further leading to a poorer model [3].

– Uncertainty sampling lacks exploration For uncertainty sampling in
DAL context, [6, 14, 12] utilize batch acquisition and query the top n in-
stances with the highest scores. However, it is likely to select a set of information-
rich but similar samples [33]. It leads to insufficient exploration, i.e., the
knowledge regarding the data distribution is not fully utilized [24], which
makes low DL model training efficiency and high annotation cost.

To address the first challenge, it is crucial to find the most representative
instances from the large unlabeled data set at the initial AL phase. The general
method [7] is to use random selection (RS) at the beginning of the training
process for exploration. However, this method could fail for imbalanced data set
because the selected instances are less representative, and most of them locate
dense areas [30]. The model can deeply learn the true data space only when
sufficient labels of data are available. However, it will increase annotation cost.
Unsupervised learning algorithms can analyze large amounts of unlabeled data.
For example, the K-Means [26] algorithm is one of the most common clustering
algorithms for knowledge discovery in data mining. The cluster information is
helpful for AL in two aspects: (1) The instances located in the center of clusters
are more representative than the others and should be labeled firstly; (2) Samples
in the same cluster are likely to have the same label [21].

For the second challenge, a feasible solution is to use a hybrid query strat-
egy to enhance the exploration of US. The similarity between samples is a
method [21, 15] to measure the similarity amongst instances by calculating the
feature vectors’ distance between each other. Similar to US, these algorithms
are often only good at exploitation, i.e., the learners tend to only focus on in-
stances near the current decision boundary [24]. But in the opposite direction, we
can also utilize the similarity to exclude similar samples. After sorting a batch
of instances based on the uncertainty through US, we could filter out similar
instances to improve the exploration of selection strategy.

To overcome the challenges mentioned above, the two core ideas of our pro-
posed algorithm are: (1) At the initial phase, we label the instances closest to
cluster centers to train the model for estimating reliable uncertainty. (2) The se-
lection of the most informative instance depends on two strategies, uncertainty
and utility. The uncertainty evaluates the epistemic uncertainty of Bayesian
Neural Network (BNN) [6, 7] to an instance. The utility filters out the instances
which are similar to the already labeled instances. Since US lacks exploration
in the data space, the utility metric helps the model discover some valuable
instances far away from the current decision boundary. Therefore, we propose
our algorithm Uncertainty and Utility sampling with Pre-Clustering (UUPC).
Compared to the baselines, our algorithm can achieve a higher classification
accuracy under fewer annotations.

22 Z. Huang, Y. He, S. Vogt, B. Sick
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The remainder of this article starts with a summary of the related work. The
details of the algorithm and the experiments are introduced in Section 3 and 4
respectively. This article is closed with a conclusion and an outlook on our future
work in this field.

2 Related Work

The uncertainty-based query strategies (e.g., Margin Sampling and Entropy) in
the DAL scenario are widely used [6, 14, 12] because it is convenient to combine
with the output of the DL model. Traditional DL requires a large amount of
labeled data to obtain reliable uncertainty estimation. In the DAL scenario with
large unlabeled data, epistemic uncertainty is particularly valuable because it
allows the model to assess its lack of knowledge. For this reason, a method that
combines deep Bayesian neural network with US has been proposed [7, 12, 22].
However, as analyzed in Section 1, US could select uninformative instances at
the initial AL phase and lack exploration. Therefore, some hybrid query strate-
gies are developed [32, 34], taking into account the uncertainty and diversity of
samples. Exploration-P [32] utilizes a deep neural network to obtain the uncer-
tainty and the similarity between the samples. Besides, this method uses RS
strategy for exploration purposes in the early AL phase. The combination of AL
and K-means clustering has been researched in previous works [13, 21] to find the
most representative instances. DBAL [34] presents a hybrid query approach that
utilizes the K-means clustering algorithm to explore the diversity of instances in
each mini-batch. Contrary to [34], which performs clustering in each AL itera-
tion, our approach annotates labels based on cluster centers only at the initial
AL phase to pretrain the BNN model. Thus, it can avoid labeling samples re-
peatedly in the same cluster. Similar to select the most representative instances
by clustering, the core set approach is also a representative query strategy. The
basic idea is constructing a core set to represent the distribution of the feature
space of the entire original data set, thereby reducing the labeling cost of AL [27,
31]. However, the core-set approach requires building a large distance matrix on
the unlabeled data set, the search process is computationally expensive especial
on the large data set [2].

3 Problem Formulation and Algorithms

In the general classification, one sample is described by x ∈ X and its label from
C classes with a corresponding label y ∈ Y = {1, · · · , C}. The clustering informa-
tion can be described explicitly by introducing the cluster label k ∈ {1, · · · ,K},
where K is the number of clusters in the data. In the pool-based AL, we define
U = {x1, · · · ,xN} as an unlabeled set with N samples. Labels are not available
at the beginning but can be annotated by the oracle. The query strategy selects
an instance x ∈ U and asks the oracle for the corresponding label y ∈ Y. The
newly labeled instance is removed from the unlabeled set U ← U\x. We add the
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instance with its label to the labeled set L ← L ∪ (x, y), and train supervised
learning models such as SVM and DNN on L.

3.1 Pre-Clustering at initial AL Phase

Selecting the most representative instances from the unlabeled data by labeling
cluster centers is heavily dependent on the quality of clustering results. In K-
Means, the crucial parameter that affects the goodness of clustering results is the
number of clusters, which should be optimized. The evaluation without any labels
must be performed using the model itself. The elbow method [16] is the most
popular heuristic approach, which calculates the sum of squared distances (SD)
from each point to its assigned center. The unsupervised evaluation scores such as
Silhouette Coefficient (SC) [25], Calinski-Harabasz Index (CHI) [4] and Davies-
Bouldin Index (DBI) [9] could also be applied to the elbow method. We will
calculate multiple cluster scores to determine the optimal number of clusters Ko.
To optimize SC and CHI, we have to maximize the scores, while lower SD and
DBI indicate a model with better defined clusters so they must be minimized.
We take the reciprocal of SC and CHI to unify the optimization direction. The
weighted score of pre-clustering (PC) is calculated by following:

Score
PC

(K,U) = α1 SD (K,U) + α2 DBI (K,U)

+ α3
1

SC (K,U)
+ α4

1

CHI (K,U)
+ λK.

(1)

The weights of each score are α1,··· ,4, and the sum is 1. The α1,··· ,4 could be
selected by expert knowledge, or in the absence of detailed expert knowledge,
like in the experiment in Section 4, all weights are selected to be the same value.
In our definition, K must be equal or greater than C. For example, MNIST [19]
requires at least 10 clusters, one per class. Kmax indicates the maximum budget
of annotations at the initial AL phase, and we expect that C < Kmax � N .
Since the above four cluster evaluation scores have different scales, in practice,
we calculate a set for each type of score (SD, DBI and reciprocal of SC and CHI)
from C to Kmax and normalize each set to 0-1 range. Then we add the four scores
to obtain a set of Score

PC
(K,U), where K ∈ {C, . . . ,Kmax}. The larger the K, the

smaller the Score
PC

, which means that the more refined clustering. However, the la-

beling cost must be considered because the oracle has to annotate every instance
closest to the center in each cluster. Therefore we append λK into Score

PC
(K,U)

as the regularization, where λ is the weight of regularization and proportional
to the cost of an annotation. Setting a proper value of λ is dependent on the
application scenario and requires expert experience. The Bayesian information
criterion (BIC) and the Akaike information criterion (AIC) could determine the
appropriate number of clusters without tuning regularization [28, 8]. But they
can be applied only if we extend the clustering algorithm beyond K-Means to
Gaussian Mixture Model (GMM). Since this paper utilizes pre-clustering by K-
Means, BIC and AIC will be researched in future work. The optimal number of
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clusters Ko can be described as follows:

Ko = argmin
K∈{C,··· ,Kmax}

Score
PC

(K,U) (2)

Assume that the information about the class label y is encoded in the cluster
k. The set of elements in cluster k is ck. Once the data probability distribution
of clusters p(x ∈ ck) and the class yk of each cluster center xk are known, we can
infer the probability distribution of class p(y|x ∈ ck) with respect to all samples
in ck [21]. However, using the cluster center to annotate all instances’ labels is
not reliable because the samples located at the intersection of clusters are easily
misclassified. In contrast with refining smaller clusters [21], our method only uses
the pre-clustering to pretrain the model. In detail, we only label the instances
closest to each cluster center by oracle p(yk|xk, k) and put them into the labeled
data set L = {(xj , yj) | j ∈ {1, · · · ,Ko}}, where Ko is optimal number of
clusters. At the initial phase of our approach, the BNN will learn the initial
labeled data set to get optimal posterior parameters for reliable uncertainty
estimation. Then the oracle will label the most informative instances based on
the combination of the following two selection functions: uncertainty and utility.

3.2 Uncertainty-Utility Selection Strategy at AL Phase

The BNN can be defined as f (x,θ). p (θ) where θ ∈ Θ is a prior on the parameter
space Θ. The likelihood p (y|x,θ) is determined by softmax (f (x,θ)). The goal
is to obtain the posterior distribution over θ from labeled training set L:

p (θ|L) =
p (L|θ) p (θ)

p (L)
(3)

The θ1, . . . ,θT are sampled T times to get an monte carlo estimate of the pre-
dictive probabilitiy distribution on the label y as the average regarding a new
unlabeled instance x∗ ∈ U :

p̂(y|x∗,L) =
1

T

T∑

t=1

p(y|x∗,L,θt) (4)

Equation 4 describes the general uncertainty estimation of BNN, and it includes
both the epistemic and aleatoric uncertainty of the prediction y. In our case, we
calculate the entropy over the predicted class probabilities of a new instance to
estimate the uncertainty score as given in the numerator of Eq. 5. In each AL
iteration, the scores of instances in U are normalized into a 0–1 range, where 1
is the most uncertain score, indicating that being annotated is often very useful.
The function Uncr (x∗) can evaluate the uncertainty score for each instance in
U :

Uncr (x∗) =

−
C∑
c
p̂ (y = c|x∗,L) log2 (p̂ (y = c|x∗,L))

log2 (C)
. (5)
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As mentioned in Section 2, the uncertainty metric requires to be enhanced
with exploration of the data space. Although in the initial stage, we use pre-
clustering to help BNN to obtain reliable uncertainty estimations quickly, some
valuable instances are far from the current existing decision boundary. Therefore,
we define a utility metric to enhance the exploration of US continually. We define
the Euclidean distances between two instances x1 and x2 as Dis (x1,x2). The
similarity between the instance x∗ to class c is defined as the median distances
of x∗ to all instances of c in the L. The formulation can be written as:

Sim (x∗, c) = median({Dis (x∗,x) , where (x, y) ∈ L and y = c}). (6)

The standard deviation of the similarities between the instance and each class
represents the trend of which class it belongs to. The higher standard deviation
indicates the instance is likely to be classified to one single class. When the
standard deviation is lower, the instance is located in the intersection of multiple
classes, and annotation by the oracle could be more beneficial. For a paired
comparison with uncertainty, we transfer the optimization task of this score into
a maximization problem. The scale of uncertainty score is 0-1. Hence in practice,
we calculate the utility score of each instance in a batch and normalize the entire
batch of utility scores to the same scale. Eq. 7 shows the method of calculating
the utility of a single instance x∗.

Utility(x∗) =
1

std ({Sim (x∗, c1) , · · · Sim (x∗, cC)}) (7)

Uncertainty-utility (UU) score is defined as follows:

Score
UU

(x∗) = γ1 Uncr (x∗) + γ2 Utility (x∗) (8)

where γ1 and γ2 are in 0-1 range and control the weights of two selection metrics
separately. The weights could be selected by expert knowledge, or in the absence
of detailed expert knowledge, γ1 and γ2 are each selected equal to 1. The higher
score, indicating the more worthy of being annotated.

3.3 Batch-based UUPC Algorithm

With batch training, our method could have more efficient training on large data
sets: (1) Clustering, such as K-Means, passes through the entire data set to ob-
tain the centers. The training process is time-consuming, which is proportional
to the amount of data. The mini-batch-based K-Means [26] uses a batch-based
method to cluster large data sets to reduce computation costs. (2) For traditional
uncertainty sampling, each iteration requires uncertainty estimation for all in-
stances in U . In DAL scenario, we use batch-based sample querying to improve
training efficiency [24].

At each acquisition step, we score a batch of candidate unlabeled samples B ⊆
U , where B = {x1,x2, · · · ,xb} and b refers to the batch size. Based on the Score

UU
,
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Algorithm 1 UUPC Algorithm for Batch Training

Input: Unlabeled data set U ← X , initial labeled set L ← Ø, one batch data B ⊆ U
with b samples is selected randomly, the process of batch sampling is described as
BatchSampling (U , b), the maximum number of AL iterations for pre-clustering phase
Bpc and for UU sampling phase Buu, Nuu instances are annotated per batch.
Output: Optimized number of cluster Ko, labeled data set L, BNN model f (x,θ)

1: Ko ← argmin
K∈{C,···Kmax}

Score
PC

(K,U)

2: iter ← 0
3: while iter < Bpc do
4: Biter ← BatchSampling (U , b)
5: {xiter

1 , · · · ,xiter
k } ← K-Means

(
Biter,Ko

)

6: if {xiter
1 , · · · ,xiter

k } == {xiter−1
1 , · · · ,xiter−1

k } then
7: Break
8: iter ← iter + 1

9: L ← {(x1, y1) , · · · , (xk, yk)} ← Labeling({x1, · · · ,xk})
10: {θ1, · · · ,θT } ← Training (f (x,θ) , y), where (x, y) ∈ L
11: iter ← 0
12: while iter < Buu do
13: Biter ← BatchSampling (U , b)
14: S ← Ø
15: while i < Nuu do
16: x∗i ← argmax Score

UU
(x) , where x ∈ Biter\S

17: S ← S ∪ x∗i
18: L ← L ∪ Labeling (S)
19: U ← U\S
20: {θ1, · · · ,θT } ← Training (f (x,θ)), where x ∈ L
21: if U == Ø then
22: Break
23: iter ← iter + 1

we select the top n candidate instances with the highest scores S = {x∗1, · · · ,x∗n}
where n ≤ b. This problem can be formulated as follows:

x∗i = argmax
x∈B\{x∗

j |j<i}
Score
UU

(x) (9)

The UUPC algorithm is shown in Alg. 1. In line 1 of Alg. 1, we select the
optimized number of clusters Ko using Eq. 2. In lines 2-8, we choose batches
randomly to train the mini-batch-based K-Means model until the positions of
cluster centers are not changed. In line 9, the instances, which are the closest to
the cluster centers, will be annotated by the oracle and moved into L. Line 10
means training the BNN based on L to help the model understand the data space
at initial AL phase. In lines 11-23, we calculate Score

UU
(see Eq. 8) on the batches

data iteratively and annotate the top Nuu instances per batch. The annotated
instances are moved to L to update the BNN model. We stop the process when
the budget is exhausted.
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Fig. 1: Unsupervised cluster number evaluation by Score
PC

on artificial data set

and MNIST using Eqs. 1 and 2. The four weights α1,··· ,4 of Score
PC

are set to the

same value of 0.25. The optimal number of clusters Ko locates at the lowest value
of Score

PC
. The red vertical dash line indicates the position of the optimal Ko.

4 Experimental Evaluation

To evaluate the quantitative performance of UUPC, we conduct experiments on
artificial and real-world data sets. The following selection algorithms are com-
pared. Besides random selection (RS) from a batch of instances and uncertainty
sampling with entropy (US), we also use Random Sampling strategies at the ini-
tial AL phase before Uncertainty Sampling (RSUS). For UUPC, Ko instances
are selected by pre-clustering at initial AL phase. In order to make a fair com-
parison between our approach and RSUS, Ko instances are randomly selected as
initial L in the RSUS method. To verify the utility metric, we conduct another
strategy UUPC-UNCR, where only the uncertainty is considered, to assess the
importance of the utility metric. For UUPC, we set the weights empirically in the
Score
UU

as γ1 = 1.0 and γ2 = 0.7. In these experiments, we use a simple Bayesian

dropout approximation neural network with multiple fully connected layers: 2
dense hidden layers with 250 and 100 units, ReLU activation and dropout, and
an output layer. The dropout probabilities are set to 0.3 and 0.5 respectively.
The θ1, . . . ,θT are sampled ten times to obtain the average probability distri-
bution on the label for each candidate instance, i.e., T is set to 10 in Eq. 4.

4.1 Artificial Data Set

The first experiment is inspired by [17]. Based on a low dimensional and small
artificial data set that could visually show the acquisition behavior of different
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Fig. 2: Visualization of acquisition behavior for different selection strategies
on artificial data set. The green color indicates how useful a selection strategy
considers a region. Darker areas are considered more valuable than brighter areas.
The corresponding selection strategy has selected ten labeled instances marked
with gray circles or squares. For UUPC, UUPC-UNCR and RSUS, the first
selected five instances at AL initial phase are marked as gray squares. Thereby,
one can see the current decision boundaries illustrated by black lines and how
the usefulness is spatially distributed to select the next instance for labeling.
The artificial data generation and visualization method are inspired by [17].

selection strategies. Through visualization, the performance of UUPC could be
visually verified when it utilizes pre-clustering in the initial stage of AL and
later selects samples through Score

UU
. We also use F1 scores to quantitatively

check whether our proposed method can outperform other baseline methods.

The artificial imbalanced data set contains 100 two-dimensional instances
with two classes (60 blue diamonds and 40 red rectangles). We put the whole
artificial data set as one batch and select an instance with most information
from U at each AL iteration. One side the data size is too tiny another side it
can compare with other traditional AL algorithms. Fig. 2d shows that US only
has one unilateral decision boundary on the left side, which lacks exploration.
The result of RS is not shown in Fig. 2 because it is unstable and entirely de-
pends on random seeds. The optimized number of pre-clustering Ko is 5 (see
Fig. 1a). For UUPC, UUPC-UNCR and RSUS, the initial selected five instances
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marked as gray squares are distributed in Figs 2a, 2b, and 2c respectively. In the
UUPC and UUPC-UNCR methods, the initially selected instances are located
in the five cluster centers representing the whole data space. Selecting the most
representative instances could help the BNN model to estimate reliable uncer-
tainty. However, similar to RS, the initial random selection strategy in RSUS
relies on random seeds. Fig. 2c illustrates one of the worst cases of RSUS be-
cause all initial randomly selected instances belong to the blue diamonds class.
This results in a poor quality model leading to poorer acquisition. The results
in Figs. 2a and 2b prove that UUPC could increase the F1 score by 4% com-
pares with UUPC-UNCR. Furthermore, we compare the results of the other two
methods xPAL [17] and PAL [18] visually1. Since these two methods did not use
BNN as a classifier, it might affect the output of their selection strategy. Here
we only simply show the distribution of the labeled points. As shown in Fig 2e,
our method could get similar F1 score as xPAL.

4.2 Real Data Set: MNIST

In the above experiment, we visualize the behavior of different selection strate-
gies on low-dimensional artificial data. This experiment aims at evaluating the
UUPC performance on real-world balanced and imbalanced data sets with high
dimensions. MNIST 2 [19] data set includes 10 handwritten digits. The data set
contains 20,000 training images and 10,000 testing images with the shape 28×28.
As shown in Fig 1b, the hyperparameter of pre-clustering Ko is 50. The batch
size is 1000, and we select the top 10 highest-scoring instances from each batch.
We repeat the following experiments 20 times and evaluate the performance of
different methods on the test data sets through the F1 score.

Fig. 3a illustrates the F1 scores of the test set with the different amount of
annotations on balanced data set. We set the whole training set of MNIST to U
and label 5% (1000 annotations) unlabeled instances in U . Same as what [3, 17,
24] pointed out, US does even worse than RS when the number of annotations is
smaller than 200 due to unreliable uncertainty estimations. UUPC and UUPC-
UNCR outperform other methods at the initial phase because of pre-clustering.
Due to only uncertainty is considered in UUPC-UNCR, the advantage of pre-
clustering decays gradually after 200 annotations. When the number of labeled
instances exceeds 250, the F1 score of RS increases slower than UUPC and US.
It indicates that the uncertainty estimation given by BNN gets more and more
important once sufficient annotations are available. UUPC could keep a higher
F1 score, which is up to 4.5% higher than other baseline methods, until the
number of the annotated samples is greater than 800.

Imbalanced data sets are very common in real-world applications. As a pre-
liminary experiment, we randomly drop 75% of samples of digits 5, 6, 7, 8,
9 in the training and test set, to assess the performance of the methods in

1 The algorithms of xPAL and PAL, as well as visualization presented in Fig. 2, are
implemented by Kottke et al. https://github.com/dakot/probal.

2 Obtained from https://colab.research.google.com.
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Fig. 3: Learning curves for MNIST data sets. Each plot shows the multi-class F1
score of UUPC and the competing algorithms on the test images after annotating
up to 5% instances from the balanced or imbalanced MNIST unlabeled data set.
The learning curve that reaches a high F1 score fast is considered best.

imbalanced data set. Similar to the experiment in the balanced data set, 5%
(630 annotations) unlabeled instances in U will be annotated. Since UUPC and
UUPC-UNCR use pre-clustering, the F1 score in the initial phase is still higher
than other methods presented in Fig. 3b. Due to selected instances are less rep-
resentative, and most of them belong to majority classes, the F1 score of RS
almost stops increasing after 300 annotations. It is worth noting that when the
number of annotations is less than 150, the F1 score of UUPC-UNCR is slightly
higher than that of UUPC, which means that when there are fewer annotations,
the utility criterion may introduce uninformative samples. One solution is to set
utility weight γ2 to 0 at the initial stage and increase its value corresponding to
the number of annotations dynamically. When the size of L is greater than 150,
the utility could enhance the exploration of the selection strategy and increase
classification accuracy significantly. Compared with other methods, the F1 score
of UUPC is 4.3% higher than other methods on average under the same amount
of labeling. In other words, our proposed method reduces the annotation cost by
33.1% on average but achieves the same performance as other baseline methods.

5 Conclusion & Future Work

The direct use of US in DAL could face two main challenges: the unreliable uncer-
tainty estimation in the initial AL phase leads to poor acquisitions and further
results in a poorer model, and the lack of exploration of US leads to insuffi-
cient diversity of samples. In this article, we propose an effective DAL algorithm
UUPC, which enables the model to explore the data space at the initial stage
using pre-clustering, and enhance the exploration of uncertainty sampling con-
tinually based on a combination of uncertainty and utility metrics. The method

Uncertainty and Utility Sampling with Pre-Clustering 31



12 Z. Huang et al.

is assessed in preliminary experiments. The experimental results show that our
method outperforms the baseline methods in balanced and imbalanced data sets
under few annotations.

This work can be further researched in these directions: (1) In the current
preliminary experiment, we only apply a tiny three-layer linear network and flat-
ten the image data without considering image features. Gal et al. [7] proved that
CNN could improve the recognition accuracy under the same number of anno-
tations. It is necessary to extract features through CNN from high-dimensional
data in future experiments. (2) The batch-based K-Means algorithm is applied
in pre-clustering to improve computational efficiency. It is worth using Autoen-
coder with CNN layer to reduce dimensionality and extract the most informa-
tive features before clustering in further research. (3) At present, we only do
preliminary experiments on artificial and MNIST data sets to verify our pro-
posed method’s feasibility. Further evaluations are needed on more data sets in
the future. Besides, we will compare other existing selection strategies in DAL
in further research. (4) UUPC and others mentioned methods above might fail
in anomaly detection scenarios. One potential solution is performing isolation
forest [20] or DBSCAN [5] at the initial stage of AL to get the rough decision
boundary and then refining the result through uncertainty-utility (UU) strat-
egy. (5) The method of obtaining the optimal number of clusters proposed in
Subsection 3.1 is still a heuristic algorithm. In different application scenarios,
estimating the weights of each sub-score and regularization weight λ in Eq. 1
relies on expert experience. The Bayesian information criterion (BIC) and the
Akaike information criterion (AIC) could also determine the appropriate number
of clusters [28, 8]. The advantage is that they originally contain regularization
and do not require experts to set additional weights.
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Abstract. Active learning is a subfield of machine learning which allows
to reduce the amount of data necessary to train a classifier. The train-
ing set is built in an iterative way such that only the most significant
and informative data are used and labeled by an external person called
oracle. It is furthermore possible to use active learning with the theory
of belief functions in order to take erroneous labels due to the oracle’s
uncertainty and imprecision into account in order to limit their influence
on the classifier’s performance. In this article, we compare the classifier
of the k nearest neighbours (kNN) to a variant based on belief functions
from the theory of belief functions (EkNN), in a situation where some
labels have been noised in order to model uncertain labels. We show that
although the superiority of EkNN over kNN is not systematic, there are
some interesting and modest results supporting the relevance of belief
functions in active learning.

Keywords: Active Learning · Belief Functions · Theory of Dempster-
Shafer · Nearest Neighbours

1 Introduction

In supervised machine learning, the size of the training set, i.e. the number of
labeled examples, is often correlated to the performance of the learned model.
Although having access to large database is no longer difficult nowadays, labeling
the data remains an expensive task, especially when the application domain
requires some expertise. Active learning offers a solution to this issue by reducing
the number of labeled examples and ensuring that data to be labeled is selected
by the model or a strategy [2,12]. Some classifiers can by combined with belief
functions from the theory of Dempster-Shafer [5] in order to take the uncertainty
and the imprecision in the labels into account, when the oracle – the person in
charge of the labeling task – is not necessarily proficient in the domain.

In this paper, our contribution consists in the use of an evidential variant
of the k nearest neighbours classifier which involves belief functions in active
learning. More precisely, we compare this evidential classifier to the common
k nearest neighbours in a context where the labels provided by the oracle are
uncertain.
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This article is organised as follow. First of all, we introduce active learning
and belief functions in section 2. Our contribution is then described in section 3
and our experiments and results are presented in section 4. Finaly the last section
5 concludes this paper.

2 State of the Art

In this section, we first introduce some notions about active learning (section
2.1) before dealing with the theory of belief functions (section 2.2).

2.1 Active Learning

Active learning (AL) is a subfield of machine learning which allows to limit the
amount of training data to train a classifier. Its specificity lies in the construction
step by step of a reduced training set, with a limited amount of information [10],
by choosing only the most relevant and informative samples which provide an
increasing in performances [2,12].

For a given classification problem, let us consider X ⊂ Rd, the set of samples
described by d ∈ N∗ features and Y, the set of the different classes. The labeled
and unlabeled samples are respectively gathered in L and U such that X = L∪U
and L ∩ U = ∅. The aim is to label the minimum amount of data required by
the model to reach a given performance or the best performance given a budget.
The classifier first selects the sample x ∈ U whose contribution to the model is
supposed to be the most significant before asking for its label to the oracle; this
step is called a query. Once the label y ∈ Y of x is provided, the classifier learns
it and updates its knowledge, moving x from U to L. Queries are formulated
repeatedly in the same way until a certain stop criterion is satisfied. At the end
of the complete learning process, it is highly probable that U still contains a lot
of samples but it is a matter of little importance as the classifier does not need
to learn the whole dataset to perform efficiently.

This strategy is known as the pool-based sampling [8] and will be used there-
after.

There are several ways to select and to evaluate the relevance or the “in-
formativeness” of a sample. The utility measures defined by the active learning
strategies in the literature [12] differ in their positioning according to a dilemma
between the exploitation of the current classifier and the exploration of the train-
ing data. Among these strategies, the uncertainty sampling, more dedicated to
the exploitation part, is one of the most popular and can be divided into three
main different types:

– the least confident prediction: the sample x∗
LC which minimises the proba-

bility of classification of its most probable class is queried:

x∗
LC = argmax

x∈U
1− P (yx|x) (1)
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With yx being the most probable class for x according to the classifier.
However, this method depends only on the most probable class and do not
take the other classes into consideration;

– the margin sampling : the sample x∗
M which minimises the difference between

the probability of classification of the two most probable classes is considered
as the most uncertain and will be sent to the oracle:

x∗
M = argmin

x∈U
P (y(1)x |x)− P (y(2)x |x) (2)

With y
(1)
x and y

(2)
x being respectively the most and the second most probable

classes for x ∈ U according to the classifier. The idea is quite natural: if
the difference between the probabilities – the margin – is small, then the
classification of x would be considered as ambiguous;

– the entropy sampling : the sample x∗
H which maximises the entropy of Shan-

non is considered as the most uncertain and will be sent to the oracle:

x∗
H = argmax

x∈U
−
∑

y∈C
P (y|x) log(P (y|x)) (3)

Unlike the previous methods, this approach considers every class and not
only the most probable ones.

One can also notice that the uncertainty could be “divided” or viewed in two
distincts parts [7]: aleatoric uncertainty which does not depends on the oracle’s
knowledge but rather, is inherent to random phenomena – such as tossing a
coin; and epistemic uncertainty which depends on the oracle’s knowledge and
ignorance – for example, distinguishing two different species of bird. The second
type of uncertainty is more appropriate in our context of active learning as the
labeling task strongly relies on the oracle’s proficiency in the domain; in partic-
ular, it is possible to adapt the uncertainty sampling to epistemic uncertainty
[9].

It is however important to notice that the uncertainty described in this sec-
tion is related to the classifier and not to the oracle. The latter’s lack of knowledge
and epistemic uncertainty might be modeled with the theory of belief functions
introduced in the next section.

2.2 Theory of belief functions

The theory of belief functions also known as theory of Dempster-Shafer is an ideal
tool for modeling uncertainty and imprecision [4,13]. Both of these imperfections
might be common in labels when the oracle is not an expert in the domain. It
is therefore necessary to model these phenomena.

Let us consider a set Θ called the frame of discernment, containing the ele-
mentary and exclusive hypotheses of a given problem. In the context of classifi-
cation, it would be the set of classes, therefore: Θ = Y.
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The theory is based on belief functions which are defined from 2Θ to [0, 1],
with 2Θ the power set of Θ. The basic belief assignment (BBA) m : 2Θ → [0, 1]
is a belief function which satisfies the normalisation condition:

∑

X∈2Θ

m(X) = 1 (4)

A BBA allows to assign elementary belief on different combinations of hypoth-
esis. For exemple, if we consider X = {θ1, θ2, θ3} ∈ 2Θ, then m(X) is the confi-
dence assigned to θ1, θ2 and θ3 altogether and cannot be subdivided among the
different sub-hypothesis {θ1}, {θ2} or {θ3}; thus, m(X) supports the veracity of
X as a whole.

In particular, if m(∅) = 0, then the assumption of closed world is true, mean-
ing that the frame of discernment is exhaustive. On the contrary, the assumption
of open world prevails if m(∅) ̸= 0, which implies that unknown hypothesis exist
and may not belong to Θ. In this article, the world will be supposed as closed.

The uncertainty about an hypothesis θ ∈ Θ is modeled by the value of the
BBA: the higher the BBA is (close to 1) and the more confidence there is in θ.
However, if the value of BBA is low (close to 0), it means that few evidences
support θ. The imprecision happens when the oracle hesitates between several
hypotheses. This phenomenon is modeled by non empty and non singleton values
of 2Θ and can be extended to the situation of total ignorance, in which case, the
entire belief is assigned to Θ in the following way:m(Θ) = 1 andm(X) = 0 for all
X ∈ 2Θ−{Θ}. In a such context, every hypothesis is possible. For example, let us
consider a classification problem of 10 classes so that Θ = Y = {θi | i ∈ J1, 10K}
and let us note A = {θ1, θ5, θ8} ∈ 2Θ. If, for a given sample x ∈ X , the oracle
believes that the class of x might be either θ1, θ5 or θ8 without being able to
determine which one is the most likely and without having evidences supporting
other classes, then a BBA mx : 2Θ → [0, 1] can be defined for x in the following
way: mx(A) = s and mx(Θ) = 1− s, with s ∈]0, 1[. Assigning a certain amount
of belief s ̸= 1 in A represents the uncertainty. As A is the union of three
different classes, that means that the oracle is furthermore imprecise; he does
not particularly favour one answer among the three. Finally, the remaining 1−s
of the belief is assigned to Θ, which models the ignorance of the oracle.

The core feature of the Dempster-Shafer’s theory is the conjunctive rule of
combination of Dempster. It allows the combination of several BBA defined from
the same frame of discernment. As a result, the hypotheses on which the BBA
agree are enhanced. Let us consider l ∈ N∗, the BBAs (mi)i∈J1,lK defined on the
same frame of discernment Θ will be combined into a single BBA m⊕:

∀X ∈ 2Θ m⊕(X) =
∑

X1∩...∩Xl=X

l∏

k=1

mk(Xk) (5)

Even though each BBA mi respects the assumption of closed world, m⊕ might
not. It is possible to normalise m⊕ in order to restore the closed world assump-
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tion:

∀X ∈ 2Θ mNorm(X) =

{
m⊕(X)

1−m⊕(∅) if X ̸= ∅,
0 otherwise.

(6)

This rule of combination might be useful in decisions’ rules. It is therefore
possible to define classifiers based on belief functions as described in the next
section.

3 An evidential classifier in active learning

Active learning is a paradigm of machine learning which reduces the amount of
training data necessary to train the classifier. As uncertain oracle leads to errors
in the labeling task, by coupling AL and the theory of belief functions [15], one
can expect a certain robustness towards incorrect labels.

In this section, we present the evidential k nearest neighbours introduced for
the first time in [5] (section 3.1) before explaining our approach and its interests
in active learning (section 3.2).

3.1 Evidential nearest neighbours

The evidential k nearest neighbours classifier (EkNN) is a variant of the classical
k nearest neighbours (kNN) based on belief functions [5].

Let us consider x ∈ U and x̃ ∈ L, one of the k nearest neighbours of x
according to the euclidian distance. It is possible to define a BBA mx,x̃ which
supports the sole hypothesis that x and x̃ belong to the same class θ ∈ Θ. A
such BBA must also deal with the distance between x and x̃: the closer they are
and the stronger the belief is. Therefore, the BBA might be defined as follow:

∀X ∈ 2Θ mx,x̃(X) =





α exp(−γθd(x, x̃)) if X = {θ},
1− α exp(−γθd(x, x̃)) if X = Θ,

0 otherwise.

(7)

with α and γθ parameters and d(x, x̃) the Euclidean distance between x and x̃.
In the original paper [5], it is recommanded to set α to 0.95 and γθ to the

inverse of the mean distance between every training samples from the same
class θ.

The combination rule of Dempster is then applied among the BBA which
support the same classes. For each class, we get the BBA (mx,(θ))θ∈Θ. Finally,
the rule of combination is applied one more time among every BBA (mx,(θ))θ∈Θ

and we get mx which aggregates every original BBA supporting different classes.
The decision rule is then the following:

∀x ∈ U y = argmax
θ∈Θ

mx({θ}) (8)

In the context of active learning, it is necessary to take into account the time
complexity of the training phase, as the classifier is updated after each query.
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In the implementation of EkNN used in this article, the training phase consists
to store the training data, then, to compute the γθ parameters which take the
value of the inverse of the mean distance between every pair of samples from the
same class θ ∈ Θ. If the euclidian distance is used, then the number of features
d will necessarily influence the time complexity. Let us consider nθ ∈ N∗, the
number of samples whose class is θ. There are Nθ = nθ(nθ−1)

2 unique couples
of samples, which is also the number of distances to be computed. So the time
complexity to compute the mean distance of the class θ is in O((d + 1)Nθ).
The global time complexity of the training phase (including every class of Θ)
is then in O

(
(d+ 1)

∑
θ∈Θ Nθ

)
= O

(
d+1
2

∑
θ∈Θ(n

2
θ − nθ)

)
= O(d

∑
θ∈Θ n2

θ).
As the training set grows by adding samples, it is not necessary to recalculate
the distances that have already been computed; in order to update the mean
distance, adding the distances of the new training data and weighting them
accordingly is sufficient.

In this context, the fact that the class of an unkown sample x might be one
of its neighbour’s would be a form of imprecision if there are several different
classes. Moreover, the uncertainty could be deduced from the distance: the closer
the neighbour is the more believable it is that x belongs to the same class as its
neighbour. However, uncertainty and imprecision do not directly depend on the
oracle in this situation but only on the training set used by EkNN.

3.2 Use of a belief functions-based classifier in active learning

The interest in using the theory of belief functions is to model uncertainty and
imprecision in the data used in active learning. In particular, it becomes possi-
ble to model the ignorance, which would be difficult in the classical theory of
probability [13]. In the context of crowdsourcing, [1] and [14] applied the theory
of belief functions to model the contributors’ uncertainty.

The approach described in this article consists to use EkNN in the context
of active learning where some labels provided by the oracle are false. Parameters
such as level of confidence or expertise estimation can not be taken into account
in a such configuration as far as we know. Therefore, the oracle’s uncertainty is
not modeled in this article. The approach tends rather to limit the influence of
erroneous labels given by the oracle. Once the learning phase is over, with some
samples being mislabeled, the EkNN classifier uses the density of the distribution
and its distances to modulate the influence of each neighbor of a sample to be
labeled. It is finally the use of the combination rule (eq. (5)) that will contribute
to enhance the hypotheses where the BBAs are in agreement, and therefore, to
limit the indirect effect of the oracle’s uncertainty.

Let us consider a dataset of two classes Θ = {θ1, θ2} and the classifier EkNN
with k = 5. Let x be a sample to be labeled and its 5 nearest neighbours
(xi)i∈J1,5K represented in figure 1. Whether the oracle mislabeled the samples
(case A) or not (case B), the goal after the learning phase for the classifier is
to find the actual class of x. In case B, two neighbours have been mislabeled,
therefore, class 1 is majoritary, but the two remaining class 2 (correctly labeled)
are closer to x. The classifier will take the distance into account and attribute a
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greater belief on θ2 even though the actual class is minoritary in the neighbour-
hood (see table 2). The coordinates of the samples and their distances to x are
described in table 1.

Fig. 1. A sample x to be labeled and its 5 nearest neighbours (within the circle). In
case A, every sample has its actual label but in case B, two neighbours have been
mislabeled by the oracle.

Table 1. Coordinates and distances to x of its 5 nearest neighbours of figure 1.

Sample x x1 x2 x3 x4 x5

Coordinate (1.5, 0.23) (1.7, 0.15) (1.3, 0.41) (1.5,−0.39) (1.3,−0.51) (0.82, 0.35)

Distance to x 0 0.22 0.27 0.70 0.62 0.77

Table 2. Values of mx of figure 1.

mx(∅) mx({θ1}) mx({θ2}) mx(Θ)

Case A 0 5.97 · 10−3 0.919 7.49 · 10−2

Case B 0 5.05 · 10−2 0.808 0.142

4 Experiments

In this section, we prove that EkNN is a viable classifier in active learning and
that its robustness to uncertain labels is interesting. We first present the method-
ology and protocol used in our experiment (section 4.1) and then discuss and
interpret the results (section 4.2).
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4.1 Methodology

The EkNN classifier will be compared to kNN in order to highlight the perfor-
mance of the former in active learning. The value of the nearest neighbours k
is difficult to choose. A very small value will make the data very sensitive to
noise while a larger value will lead to heavy computations. In this article, the
value k will be arbitrarily set to 5 for each experiment and each dataset. These
classifiers will also be used in association with uncertainty sampling (least confi-
dent prediction) and random sampling to select data for labeling. The secondary
sampling method involves selecting the data to be labeled randomly so that its
potential contribution or relevance to the model is ignored. Random sampling is
often used to highlight a better efficiency of active learning’s sampling methods.

Several datasets are used to evaluate the classifiers’ behaviour. Synthetic
random data have been generated from scikit-learn’s library [11] while some real
datasets have been extracted from the UCI repository [6]. The different datasets
are presented in tables 3 and 4.

Table 3. Synthetic datasets used in the experiments.

Name #samples #classes Class distribution #features

Synthetic A 1,000 2 90 %-10 % 10
Synthetic B 1,000 5 50 %-20 %-15 %-10 %-5 % 10
Synthetic C 1,000 5 75 %-10 %-5 %-5 %-5 % 10

Table 4. Real datasets used in the experiments. In the legend, LRC and MRC stand
for “least represented class” and “most represented class”.

Name #samples #classes LRC MRC #features

Speaker Accent Recognition 329 5 8.8 % 50 % 12
HCV 615 5 1.1 % 87 % 14
Letter Recognition (V vs. Y) 1,550 2 49 % 5.5 % 15
Wine Quality (Red Wine) 1,599 6 0.63 % 43 % 11
Pen-Based Recognition of Hand-
written Digits (3 vs. 6 vs. 8)

3,166 3 33 % 33 % 16

To evaluate the performance of a classifier coupled to a given sampling
method, the accuracy criterion is often used, but this metrics is not always
relevant, especially when the class distribution is unbalanced [3]. An alterna-
tive is to use the balanced accuracy, denoted by ab and defined in the following
equation:

ab =
1

2

(
TP

P
+

TN

N

)
(9)

With TP , TN , P and N being respectively the amount of true positive, true
negative, of samples from the positive class and samples from the negative class.
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The results for a combination of a classifier and a sampling method will be plot
under the form of a learning curve of balanced accuracy according to the number
of queries.

First, a simple comparison between EkNN and kNN is made according to the
following protocol. The initial dataset X is split into a test set T consisting of
25 % of the samples while a “training” set contains the remaining samples. From
the latter, 5 samples of each class is drawn, forming the bootstrap B, and will
be used to pre-train the classifier. The remaining of the “training” set becomes
the pool P so X = T ∪ B ∪ P. Then, the active learning phase begins: the
classifier will forge queries from P by selecting the sample according to a given
sampling method (uncertainty or random sampling) until the number of 150
queries is reached. After each query, the oracle gives the label of the requested
sample and the classifier updates its knowledge. Finally, the classifier computes
the balanced accuracy on T and adds it to the learning curve before making
another query. The whole process is repeated 20 times such that an averaged
learning curve is computed over the 20 learning curves for a given combination
of classifier-sampling method.

Second, in order to add some uncertainty to the answers provided by the
oracle, noise will be added to the labels, meaning that some of them are replaced
by false values. Noise might not always be caused by uncertainty (the oracle
can still provide false label while being confident and certain) but it will be
sufficient in the current configuration as the uncertainty is studied through its
consequences. The protocol used is the same as in the previous experiment except
that a copy of the labels is generated with t % of them being noised. To answer
queries, the oracle uses this noised copy instead of the original labels. Finally,
the noised curves will be compared to the curves corresponding to the data that
have not been noised.

4.2 Results

The comparison between EkNN and kNN in figure 2, whether with uncertainty or
random sampling, suggests that the contribution of belief functions is most often
interesting in AL. It is important to highlight that the EkNN is always superior or
equivalent to kNN. This is the case for each dataset except for Speaker Accent
Recognition where EkNN’s random sampling has significant low performance
compared to the other curves. However, the difference is not always significant
as the confidence intervals are often overlapping. Due to the definition of the
balanced accuracy, the dataset with balanced class distribution presents higher
score while the highly unbalanced one generate more learning difficulties. As
a sidenote, the fact that uncertainty sampling is superior to random sampling
is an expected behaviour, otherwise AL would not be an interesting learning
paradigm.

When noise is added to label, it is worth mentioning that on dataset that are
easy to classify, the confidence intervals of noised data is wider than non-noised
data (Hard). This might be explained by the fact that noised data leads to bigger
variance among results, and thus to a less precise balanced accuracy as it can
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Fig. 2. Comparison of the balanced accuracy (with confidence intervals) between EkNN
and kNN through uncertainty sampling (UNC) and random sampling (RD).
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be seen in figure 4. Although, this is not always the case as shown in figures 3
and 5. Predictably in such cases, when the noise rate is high, the Hard and Noised
curves of a same classifier move away from each other. It is more interesting to
compare EkNN and kNN’s Noised curves. Again, the former’s curve is often
above or at the same level as the latter’s curve. The gap between the confidence
intervals, however, does not appear to be large as they often overlap each other;
the gap is wider in figure 5.

Therefore, it appears that EkNN is slightly more robust to noise than kNN.

Fig. 3. Comparison of the balanced accuracy (with confidence intervals) between EkNN
and kNN on HCV dataset through noised and non-noised (Hard) labels.
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Fig. 4. Comparison of the balanced accuracy (with confidence intervals) between EkNN
and kNN on Letter Recognition dataset through noised and non-noised (Hard) labels.
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Fig. 5. Comparison of the balanced accuracy (with confidence intervals) between EkNN
and kNN on synthetic dataset through noised and non-noised (Hard) labels.
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5 Conclusion

Active Learning is a subfield of Machine Learning that aims to reduce the size
of the training set and the amount of labels required. This paradigm might
be coupled to the theory of belief functions in order to have a way to model
uncertainty and imprecision amongst the data.

In this article, we attempt to show the efficiency of a classifier based on
belief functions, EkNN, compared to a more common classifier, kNN. Our results
suggest that in the majority of the experiments there is a real contribution of
the EkNN classifier.

The imperfect label discussed in this article mostly covered the uncertainty
aspect with the use of noised label. Further experiments on imprecision could be
done in future work to complete this paper. This could be achieved by allowing
the oracle to propose several classes instead of one after each query. However,
a more flexible classifier would be required to treat imprecision as EkNN is not
particularly adapted to deal with several classes per sample. Besides, the EkNN
classifier requires heavy computation in AL as the distances between samples
are re-computed after each query. Thus, it might be interesting to design a more
efficient and adapted belief functions-based classifier for AL in order to treat
both uncertainty and imprecision.
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Abstract. Classification models learned from data streams often as-
sume the availability of true labels after predicting new examples, either
instantly or with some delay with respect to inference time. However,
in many real-world scenarios comprising sensors, actuators and robotic
swarms, this assumption may not realistically hold, since the supervision
of newly classified samples can be unfeasible to achieve in practice. The
extreme case where such a supervision is never available is referred to as
extreme verification latency. Furthermore, streaming data is also known
to undergo the effects of exogenous non-stationary phenomena, by which
patterns to be learned from the streams can evolve over time, thereby
requiring the adaptation of the classifier for its knowledge to match to
the prevailing concept. When these two circumstances (extreme verifi-
cation latency and concept drift) concur in a given scenario, adapting
the model to the evolving dynamics of stream data becomes a challeng-
ing task, as the lack of supervision requires rethinking this functionality
from a semi-supervised perspective. In this context we present SLAYER,
a semi-supervised learning approach capable of tracking the evolution of
concepts in the feature space, and analyzing their characteristics towards
alleviating the effects of concept drift in the classification accuracy. Be-
sides its continuous adaptation to evolving concepts, another advantage
of SLAYER is its resilience against the appearance and disappearance
of concepts over time, adapting its knowledge seamlessly when it occurs.
We assess the performance of SLAYER over several datasets and com-
pare it to that of state-of-the-art approaches proposed to deal with this
stream learning setup. The discussion on the obtained results is conclu-
sive: SLAYER offers a competitive behavior, performing best over several
of the datasets considered in the benchmark.

Keywords: Stream learning · extreme verification latency · semi-supervi-
sed learning · concept drift

1 Introduction

Nowadays increasing volumes of data are generated at unprecedented speeds,
pushing the derivation of new learning models suitable for data analysis under
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stringent computational constraints. In order to gain value from these data flows,
efficient analytical models are needed, which are at the core of research efforts
around the Big Data paradigm [13]. Among the technological Big Data land-
scape, real-time Big Data analytics aim to extract useful information from large
datasets, often produced in the form of data streams, namely, sequences of data
items that arrive fast and continuously over time. Models that learn from such
streaming data while complying with the restrictions imposed by their flowing
nature have given rise to a profitable research area widely referred to as data
stream learning. Examples of real-world stream learning applications abound
in a manifold of domains, including recommendation systems, energy demand
modeling, climate data analysis, malware/spam detection, industrial prognosis
or traffic data analysis, among many others. As a matter of fact, the upsurge
of scenarios resorting to Internet of Things (IoT) devices and functionalities has
significantly propelled the necessity of new advances in stream learning, since
applications where IoT sensors are deployed often produce huge amounts of data
continuously over time [25].

In this context, devices that capture and process such data streams are usu-
ally limited in terms of memory and computing power (e.g. sensors, tiny devices),
which causes that in most practical cases, the processing time is the main lim-
iting issue to tackle when designing models for stream learning. In response to
these restrictions, preprocessing and learning methods have been proposed in
the literature, as for instance, selective sampling strategies, divide and conquer
strategies and distributed computing [22]. Even if the relative maturity of those
developed techniques can satisfy the computational constraints to a certain ex-
tent, stream learning models must also be endowed with the capability to adapt
their captured knowledge to eventual changes in their received stream data. This
phenomenon, known as concept drift, is usually due to non-stationary environ-
mental conditions that exogenously affect the production of such data flows,
which yields that the characteristics of the data streams evolve over time and
impact on the prevalence of the knowledge embedded in the model [11, 12].

The community has hitherto been particularly active in the derivation of
new approaches suited to deal with different types of drift as per their speed
(abrupt/gradual), severity level or casuistry (feature/label drift). Actually, sig-
nificant efforts in this vein have been devoted towards the study of concept drift
together with known traditional problems in machine learning, such as class
imbalance or multi-label classification. However, a scenario that has been less
addressed to date is that where concept drift collides with a indefinite lack of
supervision of the incoming data. In many practical scenarios annotated stream
data can be costly to obtain, or even unfeasible by any means [20]. Therefore,
the immediate availability of the supervision associated to stream data (e.g. true
labels in classification tasks) cannot be assumed any longer or, at best, supposed
to be available after some application-dependent time delay. This circumstance,
known in the field as verification latency, may hold also in drifting data streams,
hence imposing not only efficiency of the learning algorithm, but also a contin-
uous adaptation of the model to varying concepts without any supervision of
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the input data whatsoever. This need for adaptation is of special relevance in
the so-called extreme verification latency, in which the supervision of the stream
data disappears at a time and is never available again for modeling purposes [18].
The real-world examples provided in the first part of this section also serve as an
example where extreme verification latency holds. For instance, IoT sensors that
capture temperature or humidity data are often subject to decalibration in the
physical and chemical properties of their transducers. In many practical setups
companies cannot afford to recalibrate such sensors every time decalibration oc-
curs, nor can they cope with the investment needed to newly annotate data in
the new operating regime of the decalibrated sensor. Therefore, they assume that
extreme verification latency is an inherent circumstance to be faced by solutions
designed for the considered task. Many contributions reported to date around
data stream classification over drifting data focus on scenarios characterized by
a lagged label supervision with respect to prediction time [17].

This work addresses data stream learning under the above two premises (con-
cept drift and extreme verification latency), focusing on slowly evolving drifts
that can be traced and characterized in a non-supervised fashion. To deal with
concept drift adaptation in these challenging conditions, we present SLAYER
(Semi-supervised stream LeArning with densitY-basEd dRift adaptation), a learn-
ing algorithm for classification tasks formulated over data streams that can in-
crementally characterize the evolution over time of the class-dependent modes
of streaming data. This characterization relies on an continuous non-supervised
analysis of incoming data in order to anticipate changes in their structural char-
acteristics. In other words, the cornerstone of SLAYER is that the analysis is
driven by the number of clusters found in data at every time, instead of the
number of classes of the formulated classification problem. At this point, we
emphasize that, unlike online clustering, which aims to have a good characteri-
zation of clusters over time but the correspondence between labels and clusters
is not taken into account, in our setup it is crucial to trace the correspondence
between labels and concepts over time. Therefore, the goal is to predict examples
to classes rather than to infer how data organize in clusters over time [21].

We assess the performance of the proposed approach over a set of public
synthetic datasets featuring evolving drifts of very diverse nature, assuming ex-
treme verification latency in all of them. Results of our proposed scheme are
compared to the ones obtained by other methods reported in the scarce litera-
ture that has so far undertaken this same problem. Results elucidate that the
unsupervised drift tracking mechanisms embodied in SLAYER can lead to supe-
rior accuracies than its counterparts, as they allow for a fine-grained modeling
of the information continuously flowing and drifting over time.

The rest of the paper is structured as follows: first a brief review of related
contributions is made in Section 2. Next, Section 3 describes the overall algorith-
mic steps of SLAYER, jointly with a description and design rationale of methods
underneath. The experimental setup is detailed in Section 4, whereas results are
presented and discussed in Section 5. Finally, Section 6 concludes this work and
outlines future research directions stimulated by our findings.
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2 Background

Among the extensive bibliography corpus related to stream learning, we first
pause at the conclusions drawn in [15] and [16]. The importance of dealing
with verification latency when learning from streams was already pointed out
in the former, whereas the latter reviewed more than 130 works about concept
drift, analyzing assumptions, methodologies and techniques, and concluding with
prospects and guidelines for future research in the field. Among them, extreme
verification latency was identified as an area deserving further research. The de-
layed or null supervision of incoming data samples implies the use of different
strategies that blindly monitor the distribution of arriving data samples and
adapt the model to changes detected therein [17]. Within such strategies to han-
dle verification latency, we highlight 1) semi-supervised learning [12], in which
a few labeled samples are available for initially training a model, which allows
subsequently extracting further knowledge from the large amount of unsuper-
vised streaming data; and 2) active learning [19], by which the learning method
itself chooses the instances to be learned. Next, we review the main algorithms
contributed so far for data stream classification in non-stationary environments
subject to extreme verification latency.

To begin with, the Arbitrary Sub-Populations Tracker (APT) approach pro-
posed in [14] is characterized by a two-stage learning strategy. Expectation-
maximization is used to determine the optimal one-to-one assignment between
the unlabeled and labeled data (by using kernel density estimation techniques),
and next the classifier is updated to reflect the population parameters of newly
received data, as well as the drift characteristics. Shortly thereafter, the renowned
Compacted Object Sample Extraction (COMPOSE) semi-supervised approach
was reported in [5], which is essentially a geometry-based framework capable
of learning from non-stationary streaming data by following three steps: 1) the
extraction of so-called α-shapes to represent the current class conditional distri-
bution; 2) the shrinkage of such α-shapes to properly model the geometric center
of each class distribution; and 3) from the compacted α-shapes new instances
are extracted to serve as labeled data for future time steps.

Ever since COMPOSE has originated multiple variants, such as FAST COM-
POSE, MASS, or LEVELIW, which improve the original version of the algo-
rithm in different aspects (e.g. speed). Before commenting on them, we follow
our review by mentioning the Classification Algorithm Guided by Clustering
(SCARGC) in [20], which consists of clustering followed by classification applied
repeatedly in a closed-loop fashion. The algorithm exploits the current and past
cluster positions extracted from unlabeled data to track drifts over time. Later in
time, the first improvement of COMPOSE, denoted as FAST COMPOSE, was
published in [23], which reduces the computational fingerprint of COMPOSE by
alleviating the complexity of their shape extraction step. At the time, another
modified version of COMPOSE – Modular Adaptive Sensor System (MASS) [8]
– was proposed as a workaround to extreme verification latency in stream data,
yet was still found to be computationally unaffordable for resource constrained
applications (e.g. IoT sensor networks). Likewise, LEVELIW [23, 24] was pro-
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posed as a framework for learning in extreme verification latency scenarios by
using importance weighting in gradual concept drift scenarios. LEVELIW lever-
ages weighting to match distributions between two consecutive time steps, and
estimates the posterior distribution of the unlabeled data using a weighted least-
squares probabilistic classifier. The work in [1] proposed TRACE, a technique
that predicts the trajectory of concepts in the feature space by means of Kalman
filtering, which was shown to adapt to drifting environments without any exter-
nal supervision. Finally, [7], a semi-supervised density-based adaptive model for
non-stationary data (AMANDA) has been recently proposed in [7]. AMANDA
weights and filters samples that best represent the concepts in the distribution.
To this end, it identifies which instances lie in the core region of the existing
class distributions, so that these selected instances are chosen as training data
for the next iteration. The weighting method receives a set of instances as input
and returns the same set of instances associated to weights.

In conclusion, the recent activity in the field reviewed above suggests that this
is a topic eager for new algorithmic approaches. This is the main motivation for
the development of SLAYER, which incorporates a novel perspective to predict
the evolution of drifts over stream data in an unassisted manner.

3 SLAYER: Description and Design Rationale

Learning in non-stationary streaming environments can be approached from two
different perspectives: active or passive [6]. The difference among them resides
on the adaptation mechanism: the active procedure depends on the use of a
drift detector that processes arriving data and triggers an alarm when a change
is detected. By contrast, a passive method continuously modifies the model over
time without explicitly detecting the drift in order to prepare the model for any
concept drift eventually present in the stream data. Our scheme builds upon a
passive approach: even if a drift is not detected anyhow, SLAYER constantly
updates its knowledge in order to yield a prediction conforming to the prevalent
status of the stream. For this to occur, a fundamental premise of SLAYER is
that drifts over the streams are gradual, so that changes can be monitored and
tracked over non-supervised data. This is important to be noted, as conventional
drift detectors and passive adaptation strategies operate by assuming immediate
access to the annotation of the received data instances, so that changes can be
inferred by quantifying the performance degradation of the model over time.

Figure 1 and Algorithm 1 summarize the main steps of SLAYER. As can be
read in the algorithm, we departing from the arrival of the initial set of labeled
instances {xt}T0

t=1, from which SLAYER infers the clusters in which these initial
samples can be grouped (line 2). Without loss of generality, this initial step can
be done by very assorted means. For the sake of simplicity and given the limited
computational effort imposed by streaming setups, this is done by using K-means
together with the well-known elbow method to compute the optimal number of
clusters K0: the total within-cluster variation is calculated for increasing values
of K0 as the sum of squared distances Euclidean distances between items and
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the corresponding centroid, so that the optimal value of K0 is declared when
the addition of a new cluster does not imply an improvement (decrease) of the
variation measure.

Once clusters {X k0 }K0

k=1 have been computed over the initial set of samples
{xt}T0

t=0, two structural characteristics are quantified for every cluster X k0 : the
amount Qk0 of examples assigned to the cluster, i.e. Qk0 = |{xt ∀t ≤ T0 :
cluster(xt) = k}|, and its radius Rk0 (namely, the maximum distance from
every example to the centroid of its assigned cluster). From these characteris-
tics and assuming a globular shape of the cluster, a rough estimation of the
cluster density is given by Dk

0 = Qk0/(R
k
0)D, where D is the dimension of the

feature space (line 2). After computing this measure over the cluster space of the
initial batch of labeled examples, a 1-nearest neighbor model can be used over
such samples to predict the samples of the next batch that follows immediately
thereafter (Lines 3 and 4).

Time

X1

X2

X1

X2

X1 X1

X2

X1

X2

X1

X2X2λ3
B(k)

. . .b = 1 b = 2 b = 3 b=M -2 b=M -1 b=M

Batch BBatch B-1

X2

X1

. . .

X1

X2

Kalman filters

ĉkB+1

Batch B + 1

(Used for predicting

batch B + 1)

. . .

{X 2,k
B+1}

K2
B

k=1

Fig. 1: Schematic diagram illustrating the internal processing of unsupervised
batches featured by SLAYER, including the successive clustering and mapping
procedure performed at every mini-batch b ∈ {1, . . . ,M}.

When the next batch arrives and once samples therein have been predicted
(line 6), another clustering phase is performed over such samples (line 7) so
that the new cluster space {X k1 }K1

k=1 can reflect the emergence of new clusters or
the disappearance of others. A matching between the clusters from the previous
batch and those arising for the current one is done (line 8), yielding a mapping
function Ω1 : {1, . . . ,K1} 7→ {1, . . . ,K0} given by:

Ω1(k′) = arg min
k∈{1,...,K}

‖ck′1 − ck0‖F , (1)

where ‖·‖F stands for Frobenius (Euclidean) norm, and ck1 denotes the cen-
troid of the k-th cluster. Despite its simplicity, this simple mapping rule permits
to trace how the cluster space evolves between subsequently received batches.
Departing from this matching, densities {Dk

1}K1

k=1 of the K1 clusters are com-
puted and compared to those of the previous clusters to which they are mapped.
SLAYER implements this comparison as |Dk′

1 −DΩ(k′)
0 |, which, together with

an increase or decrease of the number of clusters (namely, when K1 6= K0), is an
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Algorithm 1: SLAYER

Input : Initially annotated data instances {xt, yt}T0
t=1, threshold ε for

declaring a density-driven change, number of mini-batches M ,
unsupervised stream instances {xt}t>T0 .

Output: Predictions {ŷt}∞t=1.
1 Let L denote the number of classes
2 Compute clusters {X k0 }K0

k=1 and densities {Dk
0}K0
k=1 for {xt}T0

t=1

3 Set ĉk1 equal to the average of all xt such that xt ∈ X k0
4 Set `(k) to the majority class of annotated instances assigned to cluster k
5 foreach incoming batch B ∈ [1, . . . ,∞] do
6 Predict samples yt ∈ B as the label `(k) of the closest {ĉkB}

KB−1

k=1

7 Compute clusters {X kB}KB
k=1 and densities {Dk

B}KB
k=1 for {xt}t∈B

8 Compute mapping ΩB()̇ between {X kB}KB
k=1 and {X kB−1}

KB−1

k=1

9 Divide batch B in M mini-batches
10 foreach minibatch b do
11 Compute clusters {X b,kB }

Kb
B

k=1 and centroids {cb,kB }
Kb

B
k=1

12 Infer mapping λbB : {1, . . . ,Kb
B} 7→ {1, . . . ,Kb−1

B }
13 Correct each cb,kB based on λbB(·) as per Expr. (2)
14 if ∃k such that |Dk

B −DΩB(k)
B | > ε then

15 Set α` = 0 ∀` ∈ {1, . . . , L}
16 else
17 Adjust α` for each ` ∈ {1, . . . , L} as in Expression (3)
18 end

19 Predict ĉkB+1 by means of a Kalman filter, using as prior estimation
ĉk
∗
B , where k∗ = λ1

B(λ2
B(. . . (λM−1

B (λMB (k))) . . .)

20 end

21 end

indicator of a potential change of the cluster space over time. For this purpose, a
change is declared when there exists at least a cluster k′ ∈ {1, . . . ,K1} for which
|Dk′

1 −DΩ1(k
′)

0 | > ε, where ε is an hyper-parameter of SLAYER that tunes the
sensitivity of the model to the speed and intensity at which clusters vary.

When a change is identified, a forgetting mechanism must be triggered to dis-
card previous knowledge about the stream. In the unsupervised regime, SLAYER
predicts arriving samples by assigning them the label associated to the pre-
vailing cluster space whose centroid is closest to each sample. To this end,
SLAYER attains a finer level of granularity by dividing each batch into M
mini-batches of equal size (line 9). Samples falling inside each mini-batch are
clustered by means of a memory-based K-means algorithm wherein, once Kb

1

clusters have been extracted from mini-batch b (line 11), a distance-based match-
ing λb1 : {1, . . . ,Kb

1} 7→ {1, . . . ,Kb−1
1 } is computed as in (1) (line 12), so that

centroids can be corrected as (line 13):

cb,k1 =
α`(k) · cb−1,λ

b
1(k)

1 ·N b−1,λb
1(k)

1 + (1− α`(k)) · cb,k1 ·N b,k
1

α`(k) ·N b−1,λb
1(k)

1 + (1− α`(k)) ·N b,k
1

, (2)
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where N b,k
B denotes the number of samples assigned to cluster k in mini-batch b

of batch B, cb,kB its centroid, and α`(k) is a forgetting factor that depends on `(k),
i.e. the label of cluster k that is tied through consecutive batches by virtue of
repeated clustering and mapping over mini-batches. In the above expression we
note that α`(k) = 0 implies no correction of the cluster center, whereas α`(k) = 1
denotes full persistence of the cluster space over the batch. Given this role of
α`(k) in the update dynamics of the cluster space, SLAYER modifies its value
whenever a new batch arrives: if a change is declared, α` = 0 for all classes (line
15). Otherwise (line 17), α` is set inversely proportional to the average distance
between centroids of tied clusters that are assigned label `, i.e.:

α` ∝




Kb
1∑

k=1

‖cb,k1 − c
b−1,λb

1(k)
1 ‖F · I(`(k) = `)



−1

, (3)

where I(·) is an auxiliary binary function taking value 1 if its argument is true (0
otherwise). By updating the forgetting factor as in the above expression, α` can
be thought to be a rough estimation of the average speed at which label concepts
move over the feature space during the batch. The above adaptation of α is done
in a per label basis and not in a finer granularity (per every cluster), as this could
increase significantly the overall computational complexity of SLAYER, specially
in those cases with scattered cluster spaces.

Finally, SLAYER attains a higher level of adaptability against drifts over
the stream by predicting where clusters will reside during the incoming batch
(line 19). Since there is a correspondence (thoroughly tied through mini-batches)
between the clusters discovered in consecutive batches, a lightweight Kalman
filter is used to estimate the future coordinates ĉkB+1 of every centroid at the
end of the current batch B. A Kalman filter is a simple recursive system used to
calculate the state of a linear dynamic system and the variance or uncertainty of
the estimate. In SLAYER, a Kalman filter keeps track of the estimated position
of cluster centers in the feature space, yielding a vector of estimated centroids
{ĉkB+1} that is used for predicting the next batch of samples. This is possible
thanks to their assigned labels propagated through the mini-batch-wise cluster-
and-mapping process explained above.

4 Experimental Setup

In order to assess the performance of SLAYER, we make use of a public reposi-
tory of non-stationary data streams widely adopted by the stream mining com-
munity working with gradual drifts [20]. Specifically, the repository contains 15
synthetic datasets featuring different drift changes over time, including trans-
lations, rotation, warps and other transformations of the feature space. Table
1 summarizes their main characteristics. The column labeled as D and L refer
to the number of features and classes, respectively. In these datasets, the initial
5% of the samples are assumed to be supervised, whereas the remaining stream
instances arrive in 100 batches in chronological order.
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After reviewing the latest contributions on data stream classification under
extreme verification latency in non-stationary environments (Section 2), we have
built a comparison benchmark that includes several proposals published so far
in this research area:

– A static classifier learned from the first labeled samples (STATIC).
– A sliding window classifier that learns initially from labeled samples, and up-

dates its knowledge with predicted upcoming samples, discarding samples that
do not fall inside the sliding window for predicting new instances (SLIDING).

– An incremental window classifier, which works similarly to the sliding window
classifier, but that does not forget any past instance for training (INCR).

– COMPOSE [5], which creates a boundary from the current data and defines
a shape that represents the distribution of each class. After several iterations,
COMPOSE draws instances from the core region(s) to support training as
labeled data. Finally, upon the reception of new unlabeled data, new instances
are combined with that of the core regions to retrain the model and adapt to
eventual non-stationary behaviors over the stream.

– LEVELIW [23, 24], an iterative weighting approach that relies on the assump-
tion that there is an overlap among class-conditional distributions between
consecutive time steps, a premise that holds in slow drifting data streams.

– AMANDA [7], in which the distributions of each class are first estimated
over the received labeled samples. Then, a semisupervised learning classifier
is learned and used to predict upcoming batches with unlabeled samples. A
density-based algorithm measures the importance of the classified instances
by weighting them, and only retaining the most representative samples. This
method has two variations: AMANDA-FCP (A-FCP), which selects a fixed
number of samples; and AMANDA-DCP (A-DCP), which dynamically selects
samples from data.

Dataset LD Instances
Class

distribution
Description

1CDT 2 2 16 · 103 50%/50% Two clusters (one per class), one moving in diagonal
1CHT 2 2 16 · 103 50%/50% Two clusters (one per class), one moving horizontally
1CSurr 2 2 55283 37%/63% Two clusters (one per class), one surrounding the other
2CDT 2 2 16 · 103 50%/50% Two clusters (one per class), moving in the same diagonal
2CHT 2 2 16 · 103 50%/50% Two clusters (one per class), moving together horizontally
FG2C2D 2 2 2 · 105 75%/25% Three clusters for one class, one moving cluster for the other class
GEARS 2 2 2 · 105 50%/50% Two rotating gears, one per class
MG2C2D 2 2 2 · 105 50%/50% Two clusters per class, moving and overlapping with each other
UG2C2D 2 2 1 · 105 50%/50% One cluster per class, moving without overlapping with each other
UG2C5D 2 5 2 · 105 50%/50% Two 5-dimensional clusters, one per class, moving and overlapping
4CE1CF 5 2 173250 20% per label Four classes expanding and one class fixed, one cluster each
4CR 4 2 144400 25% per label Four clusters, one per class, rotating with no overlap

4CRE-V1 4 2 125 · 103 25% per label Four clusters, one per class, rotating with expansion (version 1)
4CRE-V2 4 2 183 · 103 25% per label Four clusters, one per class, rotating with expansion (version 2)
5CVT 5 2 4 · 104 33%×1, 16%×4 Five clusters, one per class, moving together vertically

Table 1: Slow drifting stream datasets from [20] utilized in this work.

In what refers to performance metrics, we use the so-called prequential error,
which has been thoroughly used in the literature [9, 10]. For the sake of compli-
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ance with the methodological practices in the above prior work, the prequential
error is computed based on an accumulated sum of a loss function between the
prediction and observed values [3], i.e.:

preqError(t) =
1

t

t∑

t′=1

L(yt′ , ŷt′), (4)

where the prequential error is computed at time t, ŷt′ represents the prediction,
and yt′ represents the real value at time t′ ≤ t. Among the possible loss functions
for classification, we specifically use the 0-1 loss, i.e. L(yt′ , ŷt′) = 0 if yt′ = ŷt′

and 1 otherwise. The prequential error allows monitoring the evolution of the
models’ performance over time. However, it is convenient to gauge other perfor-
mance metrics that are sensitive to mild class imbalance, as there is no certainty
that classes are equally represented in batches received over time. Therefore, we
also report on the macro F1 score, which grants the same importance to each la-
bel/class. Source code and datasets will be made available at a public repository
available in https://git.code.tecnalia.com/maria.arostegi/slayer/.

5 Results and Discussion

The obtained results are summarized in Tables 2 (average prequential error)
and 3 (average macro F1 score) for the methods and datasets considered in our
study. In these tables, the best results for each datasets are highlighted in bold.

Dataset STATIC SLIDING INCR COMPOSE LEVELIW A-FCP A-DCP SLAYER

1CDT 0.76 0.06 0.3 0.08 0.04 0.02 0.05 0.006
1CHT 3.93 0.43 3.2 0.48 0.4 0.33 0.39 0.38
1CSURR 35.86 9.05 36.06 9.43 9.2 4.39 7.93 5.91
2CDT 46.3 6.13 46.14 6.73 49.74 5.46 5.83 3.8
2CHT 45.97 48.45 46.01 47.41 47.41 14.39 19.93 10.27
FG2C2D 17.79 4.43 18.29 12.15 4.31 5.12 16.39 4.32
GEARS 5.43 0.81 5.33 4.03 6.18 0.81 3.74 3.84
MG2C2D 51.63 22.86 50.66 49.17 9.31 8.7 14.88 8.59
UG2C2D 55.81 4.97 54.42 5.32 26.34 4.3 12.64 4.26
UG2C5D 30.97 20.11 30.62 20.82 20.82 8.21 8.53 8.08
4CE1CF 1.98 1.9 1.82 2.09 2.21 1.73 1.92 2.029
4CR 78.83 0.02 78.75 0.04 0.02 0.02 0.03 0.009

4CRE-V1 78.15 81.29 79.44 79.55 79 73.5 73.28 2.21
4CRE-V2 79.61 82.88 79.67 77.38 80.77 69.97 71.81 7.69
5CVT 54.51 60.97 52.04 65.5 59.18 24.11 52.38 12.4

Table 2: Prequential error of the compared methods for the considered datasets.

We begin our discussion by inspecting the prequential error scores in Table 2.
It is first relevant to notice that the use of näıve methods (STATIC, SLIDING,
INCR) yields in general comparatively bad results due to the fact that they are
not designed to cope with non-stationary environments under extreme verifica-
tion latency. If we take a closer look at these scores, except for GEARS, 4CR and
4CEF1CF, the prequential error of those methods are significantly higher that
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the rest of algorithms in the benchmark. By contrast, if we consider approaches
tailored to deal with unsupervised drifting streams such as COMPOSE or LEV-
ELIW, results improve across datasets, yet still lagging behind those obtained
by A-FCP, A-DCP and SLAYER.

Among the weak points of our proposed approach we pause at the impor-
tance of the density of the clusters, and the speed at which they move over the
feature space. For example, in the 4CE1CF dataset, in the beginning of the stream
the 5 classes are very close to each other in the feature space, represented by
single clusters with very similar densities. This poses a challenge for the change
detection mechanism of SLAYER, as reflected by the 6th position in the ranking
between models for this dataset. Therefore, SLAYER fails to properly charac-
terize the evolution of concepts from unsupervised data streams when these two
circumstances collide together.

We now focus on the comparison between the two AMANDA-based ap-
proaches (A-FCP and A-DCP) and SLAYER. First we observe that SLAYER
obtains a slight advantage over A-FCP, as SLAYER scores best in 10 out of
the 15 datasets under consideration. A-FCP attains the best performance in 4
datasets, falling down once to the 6th position in the ranking. By contrast, A-
DCP is never below the fourth position among the methods, but it does not score
best in any of the datasets. Similar conclusions can be drawn when analyzing
the macro F1 results shown in Table 3. SLAYER yields the best results for 9
datasets, followed by A-FCP that scores first in 5 datasets, and A-DCP in just
one dataset.

Dataset STATIC SLIDING INCR COMPOSE LEVELIW A-FCP A-DCP SLAYER

1CDT 0.9935 0.9994 0.9971 0.9995 0.9996 0.9997 0.9994 0.9999
1CHT 0.96 0.995 0.9681 0.9949 0.996 0.9963 0.9955 0.996
1CSURR 0.6403 0.9137 0.6384 0.9094 0.6368 0.9607 0.9267 0.9385
2CDT 0.3871 0.9418 0.3884 0.9362 0.4836 0.948 0.9416 0.961
2CHT 0.3954 0.356 0.3942 0.4758 0.4758 0.8526 0.788 0.897
FG2C2D 0.7322 0.9391 0.7298 0.8596 0.9469 0.9319 0.819 0.9419
GEARS 0.9474 0.9957 0.9485 0.9637 0.9382 0.9957 0.963 0.9579
MG2C2D 0.4795 0.7543 0.4936 0.505 0.5923 0.9143 0.8499 0.9133
UG2C2D 0.4425 0.9514 0.4546 0.9491 0.7366 0.9581 0.8706 0.9538
UG2C5D 0.668 0.7549 0.6782 0.7918 0.7918 0.9151 0.9129 0.9153
4CE1CF 0.9807 0.9795 0.9821 0.9781 0.9779 0.9808 0.9803 0.9798
4CR 0.2099 0.9998 0.2154 0.9999 0.9998 0.9998 0.9999 0.9999

4CRE-V1 0.2073 0.1804 0.1997 0.2035 0.2486 0.267 0.2651 0.9778
4CRE-V2 0.2043 0.1259 0.2039 0.1971 0.2464 0.3035 0.181 0.9229
5CVT 0.3537 0.1812 0.3707 0.2385 0.1767 0.7297 0.3802 0.8849

Table 3: Macro F1 results of the compared methods for the considered datasets.

We end our discussion by inspecting the statistical significance of the dif-
ferences observed in the above tables. To shed light on this matter, Demsar’s
critical distance diagrams are often used [4]. These diagrams show the average
ranks of a number of models under comparison across multiple datasets, wherein
significant differences are declared when the difference between the average ranks
of two models is larger than a critical distance (CD). The CD value is given by
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a post-hoc Nemenyi test at a certain confidence level (usually set to 0.95). The
critical distance diagram corresponding to the results in Table 2 is shown in
Figure 2.a: unfortunately, the average rank achieved by SLAYER cannot be de-
clared to be statistically significant, mainly due to the relatively high value of
CD (2.71) that results from the large number of models being compared.

Although critical distance diagrams are widely used by the community, they
have been reported to be misleading and scarcely interpretable [2]. Therefore,
we complement this analysis with a pairwise Bayesian analysis of differences be-
tween the best performing methods in the benchmark, namely, A-FCP, A-DCP
and SLAYER. Specifically, we model the probability that one model outperforms
another based on the results obtained by each of them over all datasets. Once
fitted, the probability distribution is sampled and displayed in barycentric coor-
dinates, wherein three regions can be observed: the first algorithm outperforms
the second (and vice versa), and a region of practical equivalence (the two meth-
ods perform similarly). A rope parameter establishes the minimum difference
that scores of both methods must have for them to be declared different to each
other, thereby ensuring that statistical significance relies on an interpretable
parameter. Figure 2.b depicts the Bayesian posterior plot between A-FCP and
SLAYER performed over the prequential error scores with a rope equal to 0.1.
As shown in this plot, the sampled distribution appears to be clearly skewed
towards SLAYER, revealing that it is likely that our proposal outperforms A-
FCP, with prequential error differences larger than the selected rope value. When
comparing SLAYER to A-DCP (Figure 2.c), the significance of the better pre-
quential error performance observed for our proposal is even more significant.

1 2 3 4 5 6 7 8

SLAYER

A-FCP

A-DCP

SLIDING LEVELIW

COMPOSE

INCR

STATIC

CD

(a)

p(A-FCP)

p(rope)

p(SLAYER)

(b)

p(A-DCP)

p(rope)

p(SLAYER)

(c)

Fig. 2: (a) Critical distance diagram of prequential error results in Table 2; (b)
Bayesian posterior plot of A-FCP versus SLAYER corresponding to the same
table; (c) Bayesian posterior plot of A-DCP versus SLAYER.

6 Conclusions and Future Work

This work has gravitated on a research area that has been paid considerably
lower attention in the stream learning field than other widely studied paradigms:
learning to classify streams subject to the effects of concept drift and extreme
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verification latency. In this setup, classification models for streaming data be-
come obsolete at a point due to the drift experienced by concepts to be classified
over time, whereas the absence of supervision about the stream samples hinders
severely the change detection, tracking and adaptation processes. This confluence
of conditions has been the main motivation for SLAYER, the novel approach
presented in this paper, which continuously analyzes the evolution of clusters
and ties them together across batches, so that a correspondence between labels
and evolving clusters can be constantly maintained over time. By virtue of this
mechanism, SLAYER seamlessly accommodates the appearance/disappearance
of new clusters, and is particularly suitable for environments where the speed of
change in the feature space is not abrupt, so that posterior distributions overlap
to a certain extent between consecutive time ticks (slow feature drift). Simula-
tion results over 15 datasets with different drift dynamics have elucidated that
in most of them, SLAYER outperforms state-of-the-art approaches contributed
to address this kind of scenarios. Furthermore, differences have been found to
be significant as concluded from a Bayesian posterior analysis.

Future research work will be devoted towards enhancing different constituent
parts of SLAYER. We foresee to resort to methods capable of learning topologi-
cal relationships between multi-dimensional samples (e.g. Growing Neural Gas)
for a better characterization of the patterns associated to each of the classes
are not corpuscular (as in the GEARS dataset). Also, we will assess the extent
to which we can extrapolate core SLAYER concepts (especially the prediction
of the evolution of the concepts using Kalman) to other data stream learning
paradigms, including online clustering. Likewise, improvements are planned in
the way SLAYER connect the different clusters over mini-batches, for which an
alternative measure of similarity between clusters more reliable than the dis-
tance between their centroids will be sought. Finally, we will explore whether
mini-batches of variable size can be considered in the design of SLAYER, so
that mini-batches are enlarged whenever the drift dynamics between the pre-
vious consecutive mini-batches are slow. This would lessen the computational
effort required to run SLAYER, and could give rise to 1) a more accurate rep-
resentation of the prevailing cluster distribution; and 2) a better traceability of
the label-cluster assignment over time.
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Abstract. This article proposes a novel concept to leverage the time-
consuming labeling process for training object detectors in automated
driving. The approach uses pre-trained probabilistic, well-calibrated ob-
ject detectors for different sensor modalities. Based on the knowledge
about the sensor extrinsics, the probabilistic detections are transformed
from one sensor modality into another. These transformed detections are
then used as pre-labels for the respective sensor modality. However, these
pre-labels are error-prone, such that we propose an additional dedicated
labeling quality assessment. The latter allows us to attach a quality seal
to automatically pre-labeled data sets and is the starting point for inter-
active human-in-the-loop learning.

Keywords: Highly Automated Pre-Labeling ·Object Detection ·Human-
In-The-Loop Learning · Autonomous Driving · Imperfect Labels

1 Introduction

Artificial intelligence and, in particular, machine learning (ML) are the enabling
technologies in autonomous driving. In this context, ML and deep learning tech-
niques are already successfully used for perception, i.e., sensory environment
and object recognition [4]. Training and validating these mostly deep neural
networks, e.g., convolutional neural networks (CNN), requires vast amounts
of labeled data. However, labeling, especially for object detection, is a time-
consuming and, therefore, costly task [17]. In this article, we present an approach
to significantly reduce the labeling effort in the particular application domain of
ML-based object detection for highly automated driving. Our approach considers
that many modern vehicles are equipped with various sensors, including cam-
eras, LiDAR, and RADAR. We exploit this sensor diversity (i.e., the strengths
and weaknesses of the respective sensors [12]) in our approach by transferring
labels between different sensor modalities. First, we train object detectors for
the single sensors. We further use these predictions as so-called pre-labels (i.e.,
imperfect, potentially error-prone labels). These can, in turn, be used to improve
the object detectors of the other sensor modality. Our approach can be under-
stood as semi-supervised cross-domain learning [2], whereas the object detectors
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are interpreted as multiple error-prone annotators [9]. However, in safety-critical
applications such as highly automated driving, the created labelings must be
quality-checked to ensure that no incorrect concepts are learned.

Contributions: We address this problem by proposing a detailed concept to
automatically generate pre-labelings via cross-domain label transfer for percep-
tion in autonomous driving. Therefore, we identify four major research questions
arising within our concept’s stages and provide ideas for targeting each of them.
We envision our concept as an application-driven starting point for human-in-
the-loop learning. In this context, our concept provides methods leveraging inter-
active learning techniques in object detection, e.g., probabilistic object detectors,
improving the labeling quality, coping with imperfect labels, and decreasing an-
notation effort. As another major contribution, we see the quality assessment
of pre-labelings to support subsequent human-in-the-loop learning processes. In
this sense, we aim to provide a quality seal to pre-labeled data sets, e.g., pre-
labels having an expected mean average precision of 90%.

2 Highly Automated Pre-Labeling

This section describes the four stages of our concept (cf. Fig. 1) and formulates
research questions. In the first stage, we develop probabilistic object detectors.
The second stage aims to improve the calibration of these detectors further.
Subsequently, the probabilistic predictions are interpreted as pre-labels of the
different sensor modalities and optionally fused in the third stage. Finally, the
concept is concluded by the fourth stage, including a labeling quality assessment
based on probabilistic outputs. It serves as a starting point for human-in-the-loop
learning to refine the pre-labels and release them for further model training.
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Probabilistic 

Sensor Fusion

Annotator
Labeling Quality

Assessment

Pre-labeled Data

Labeled Data

Probabilistic

Object Detector
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Fig. 1. Illustration of the proposed highly automated labeling process exemplary shown
for two sensors. Dashed arrows represent optional processes.
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Stage I: Probabilistic Object Detection – How to train probabilistic object
detectors for different sensor modalities? In stage I, we consider pre-trained ob-
ject detectors for different sensor domains, i.e., camera- and LiDAR-based object
detectors [20, 21]. Common object detectors provide point estimates for the clas-
sification probabilities of the object and the coordinates of its 3D bounding box,
i.e., position in space, the yaw angle, and its size [13]. In contrast, probabilis-
tic object detectors provide predictive distributions for all quantities. Starting
from pre-trained CNNs for 3D bounding box detection, e.g., for camera [21]
and LiDAR [20], the main challenge will be a meaningful separation between
aleatoric and epistemic uncertainty [10] without massively increasing computa-
tional complexity during training and inference. Therefore, we aim to leverage
the approach proposed in [14], which enforces specific properties, i.e., smooth-
ness and sensitivity in the feature space learned by a deep neural network. In
this way, we can capture epistemic uncertainty by distributing that features and
aleatoric uncertainty by evaluating the entropy of its predictive distribution.

Stage II: Probability Calibration – How to further improve the calibration
of the probabilistic detectors? In stage II, we aim at improving probabilistic
outputs by the object detectors as a foundation for the estimation of the labeling
quality of the pre-labeling. For example, if the detector outputs a probability for
a car with 90%, this statement should also be true in exactly 90% of the cases.
The same applies to the probabilistic estimation of continuous target values,
e.g., the coordinates of a 3D bounding box. However, deep neural networks
tend to frequently output overconfident predictions, which can be alleviated
through probability calibration methods [3, 15]. We intend to investigate post-
hoc calibration methods, such as temperature scaling [5], and proper scoring
rules to optimize the probabilistic object detectors [8].

Stage III: Label-Transfer and Probabilistic Sensor Fusion – How to
transfer labels between different sensor modalities and combine probabilistic pre-
dictions originating from different sensor modalities? In stage III, we use the
extrinsic sensor parameters to transfer pre-labels from one sensor domain to an-
other. Therefore, we assume that the sensor extrinsics are known in advance. The
transferred pre-labels can be used as labels for the other sensor modality and
vice-versa. Moreover, we also investigate the fusion of probabilistic pre-labels
(i.e., detections) originating from different sensor modalities (cf. stage I and II).
The fusion is realized employing a Bayesian approach (cf. [6]). Therefore, we aim
at examining using a joint probabilistic data-association filter [1] for the assign-
ment of 3D bounding box detection from each sensor modality. Furthermore, we
investigate the usage of Kalman and particle filters for object tracking [19].

Stage IV: Labeling Quality Assessment – How to assess the label quality
of probabilistic 3D bounding box predictions? In stage IV, the aim is to assess
the labeling quality [7, 16] of the obtained pre-labeled data set. For this purpose,
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we use the probabilistic predictions and determine expected values, e.g., with
respect to the number of expected false classifications, the undetected objects,
or the bounding box error. At this point, we want to explore the extent to
which these expectations hold. Based on this, we aim to derive a quality seal
for the pre-labeled data set. In this context, a starting point for the pre-labeling
quality estimation is the ML-based online performance estimation using multiple
sensors [11]. Moreover, we expect to assess whether a camera can be used for
labeling LiDAR and vice-versa and when such a label transfer is useful. Ideally,
the final labeling quality assessment supports human experts to decide whether
individual bounding boxes need to be re-labeled (cf. active learning [18]) or
whether the pre-labeling is of sufficient quality to release the pre-labeled dataset
for further processing such as model training.

3 Conclusion

This article presents a novel concept for highly automated pre-labeling via cross-
domain label transfer for perception in autonomous driving. The novelty of our
concept lies in the label transfer exploiting the strengths and weaknesses of dif-
ferent sensor modalities for object detection. The use of multiple sensors to im-
prove perception is not new. However, the use for pre-labeling (in the context of
3D bounding box detection) in combination with an explicit quality assessment
component under consideration of calibrated probabilistic predictions represents
a novel approach. It allows us to attach a quality seal to pre-labeled data sets.
The quality assessment is the starting point for human-in-the-loop learning and
iterative model improvement. Although our concept focuses on the autonomous
driving domain with LiDAR and camera sensors, it can be extended toward
multiple sensors and possibly different applications involving data from multiple
sensors. Moreover, the presented ideas form a foundation for further investiga-
tions in the area of interactive adaptive learning. For example, the uncertainty
estimates of the developed probabilistic object detectors might be used to derive
novel utility measures for active learning in object detection.
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3. Feng, D., Rosenbaum, L., Gläser, C., Timm, F., Dietmayer, K.: Can We Trust
You? On Calibration of a Probabilistic Object Detector for Autonomous Driving.
In: IEEE/RSJ IROS Workshops. Macau, China (2019)
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Abstract. Active class selection strategies actively choose the class pro-
portions of the data with which a classifier is trained. While this freedom
of choice can improve the classification accuracy and reduce the data ac-
quisition cost, it has also motivated theoretical studies that quantify the
limited trustworthiness of the resulting classifier when the chosen class
proportions differ from the class proportions that need to be handled
during deployment. In this work, we build on these theoretic founda-
tions to propose an active class selection strategy that allows machine
learning practitioners to express their prior beliefs about the deployment
class proportions. Unlike existing approaches, our strategy is justified by
PAC learning bounds and naturally supports any degree of uncertainty
with respect to these prior beliefs.

Keywords: Active class selection · Imbalanced binary classification ·
PAC learning theory.

1 Introduction

Active class selection (ACS) [11, 9] allows machine learning practitioners to ac-
tively choose the label proportions of their training data. This freedom of choice
is due to a class-conditional data generator, e.g. an experiment or a simulation,
which acquires feature vectors for arbitrarily chosen classes. Data generators of
this kind appear in various use cases, such as astro-particle physics [4, 3], gas
sensor arrays [11], and brain computer interaction [13].

Lomasky et al. [11] have put forward the idea that such a generator can
be leveraged in a sequence of multiple acquisition steps, as sketched in Fig. 1.
In each step, a classifier is trained and evaluated on all examples that have
been acquired so far, starting from a small initial data set (i). Based on the
classifier’s performance, a data acquisition strategy is then allowed to choose the
label proportions of the next acquisition step (ii). The class-conditional data
generator realizes these proportions, i.e. it produces a batch of labeled data
according to the choice of the strategy (iii). This batch adds to the training
set from which the classifier will be trained in all subsequent iterations. The
promise of such a sequential and informed data acquisition is that the classifier
can benefit in terms of data acquisition cost and performance, as compared to
being trained with some predetermined proportions of classes.
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X → Y
classifier

Y → X
data generator

strategyi) evalua
tion ii) choice

iii) training data

prior beliefs about deployment class proportions

existing strategies

our proposal

Fig. 1. Strategies for active class selection choose the label proportions of newly ac-
quired training data. They are allowed to base their decisions on the performance of a
classifier that is trained with all previously acquired data. We propose to incorporate
prior beliefs, which can be uncertain, into the decision making.

Existing strategies [9, 11] for ACS do not account for the class proportions
that a trained model needs to handle during deployment; they solely focus on
the perceived difficulty of classes. One notable exception is a strategy that ac-
quires training data precisely with those label proportions that are faced in the
deployment stage; by design, this strategy requires the practitioner to know the
deployment class proportions precisely in advance. However, what if we know the
deployment class proportions not precisely, but with some degree of uncertainty?
For instance, astro-particle physicists can estimate the ratio between their sig-
nal and their background class only roughly, as being approximately 1 : 103 or
even 1 : 104 [2]. We are not aware of any ACS strategy that supports uncertain
deployment class proportions out of the box.

Motivated by such uncertainties, we have recently proposed a theoretically
justified certificate for ACS-trained models [4]. This certificate declares a range
of deployment class proportions for which a given model is accurate (i.e. has an
ACS-induced error smaller than some ε > 0) with a high probability (i.e. with
probability at least 1 − δ). This declaration can help practitioners in assessing
the practical value of an ACS-trained model. However, it has no immediate
implication on how to acquire data—in terms of an ACS strategy—when the
deployment class proportions are uncertain.

In the following, we therefore evolve the theoretical basis of our certificate
towards a data acquisition strategy for ACS. This strategy uniquely combines
the following qualities:

– our ACS strategy naturally supports uncertainty about the deployment class
proportions, e.g. as expressed by a Beta prior for binary classification.

– our strategy is theoretically justified by PAC learning bounds.

Our experiments suggest that our strategy, even under high amounts of un-
certainty, exhibits a performance that is comparable to the performance of an
optimal strategy with privileged access to the class proportions of the test set.
Other strategies, which are oblivious to the deployment class proportions, fall
behind by a significant margin.
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We summarize the theoretic foundations of ACS in Sec. 2 before we detail
our strategy in Sec. 3. The experiments in Sec. 4 lead to our conclusion in Sec. 5.

2 Theoretical Background

The term “domain”, as proposed by domain adaptation [14, 12], describes a
probability density function over the data space X × Y. In ACS, we assume
that the source domain S—where a machine learning model is trained—differs
from the target domain T—where the model is deployed—only in terms of the
class proportions pS 6= pT . Such deviations occur due to the freedom of ACS
strategies to choose any pS for the acquisition of training data. We are interested
in the impact of such deviations on the deployment performance, i.e. on the
classification performance with respect to T .

Recently, a PAC learning perspective on this setting has provided us with
Theorem 1 [4]. This result quantifies the difference in loss values L(h) between
an ACS-generated training set D and the target domain T . Only if this difference
is small, we can expect to learn a classifier h from D that is accurate also with
respect to T , similar to standard PAC learning theory. The key insight of this
theorem is that the relevant loss difference between D and T is continuously
approaching the inter-domain gap ∆p ·∆` while the training set size m increases.
In ACS, this increase happens naturally while more and more data is actively
being acquired, so that the error of any ACS-trained classifier is increasingly
dominated by this gap. Here, ∆p = |pT − pS | denotes the difference between
class proportions and ∆` = |`Y=2(h)− `Y=1(h)| denotes the difference between
class-wise losses. The latter of these terms is constant across domains S and T .
In turn, ∆p ·∆` is constant with respect to the random draw of the training set
D and is therefore independent of ε, δ, and m; it reflects the interplay between
the classifier h, the data distribution, and the loss function.

Theorem 1 (Identical mechanism bound; binary classification [4]). For

any ε > 0, any h ∈ H, with probability at least 1− δ, where δ = 4e−2mε
2

:

∆p ·∆` − ε ≤ |LT (h)− LD(h)| ≤ ∆p ·∆` + ε

The true difference ∆` from Theorem 1 is unknown, but we can estimate
an upper bound ∆`∗ of this quantity from ACS-generated data. The details on
this estimation are already presented in the scope of ACS model certification
[4] and do not need to be repeated here. All we need to know to establish our
ACS strategy is that ∆`∗ is the smallest upper bound of ∆` that holds with
probability at least 1 − δ. The probabilistic nature of this upper bound stems
from the fact that ∆`∗ is estimated from finite amounts of data.

3 A Strategy for Uncertain Class Proportions

The goal of our strategy is to decrease the inter-domain gap ∆p ·∆` from The-
orem 1 as much as possible, as according to a prior distribution P̂ of the de-
ployment class proportions pT . This goal will allow any binary classification
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algorithm to learn accurate predictions for the target domain, as according to
the prior beliefs of a domain expert.

Formally, we assume a prior P̂ : [0, 1]→ [0, 1] of the positive class prevalence

pT ∈ [0, 1] to be given. We incorporate P̂ by marginalizing the inter-domain gap
over this prior, as according to Eq. 1. Since we do not know the true ∆`, we are
using the estimated upper bound ∆`∗ instead. Consequently, the marginalization
according to ∆`∗ is an upper bound, with probability 1−δ, of the marginalization
according to the true ∆`.

ε∗ =

∫ 1

0

P̂(pT = p) · |pS − p|︸ ︷︷ ︸
= ∆p

·∆`∗ d p (1)

In each ACS iteration, we are free to alter the class proportions pS of the
ACS-generated training set to some degree, depending on how much data we
acquire in each batch and on how much data we already have acquired. In fact,
we can understand pS = m2

(m1+m2)
as a function of the class-wise numbers of

samples m1 and m2. The upper bound ∆`∗ also lends itself for being interpreted
as a function of sample sizes: the more data is acquired in both classes, the
tighter will our estimation of this quantity be. Ultimately, we consider ε∗ to be
a function of m1 and m2, so that we can minimize ε∗ via an optimal choice of
m1 and m2 in each data acquisition batch.

3.1 Minimizing the Marginalized Error

Our strategy decreases ε∗ in the direction of its steepest descent, i.e. it takes a
simple gradient step with respect to the acquisition vector m = (m1,m2). The
gradient which defines the steepest descent is computed via the product rule:

∇m ε∗ = ∇mf ·∆`∗ + f · ∇m∆`
∗

where f(m) =

∫ 1

0

P̂(pT = p) · |pS(m)− p| d p
(2)

We will come back to the function f shortly. For now, we plug ∆`∗ and
∇m∆`

∗ into the equation above. These functions are defined by

∆`∗(m) = ˆ̀
Y=2(h) +

√
ln δ2
−2m2

− ˆ̀
Y=1(h) +

√
ln δ1
−2m1

,

[∇m∆`
∗]y =

(
− ln δy
my

) 3
2

· (2
√

2 ln δy)−1,

(3)

where the δy are probabilities of violations of ∆`∗ that occur from either one
of the class-wise losses `Y=y(h) in ∆`. In fact, finding a suitable assignment of
δy values within a given probability budget δ = δ1 + δ2 − δ1δ2 is the central
difficulty in model certification; there, the sample size m is fixed, so that ∆`∗

can be optimized over this assignment [4]. Here, we keep the δy fixed instead, to
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values that are obtained with a certificate from previous ACS acquisitions. This
change allows us to optimize ∆`∗ over m to acquire new data and it guarantees
that ∆`∗ remains an upper bound of the true ∆` also in the next batch, at least
with probability 1−δ. The class-wise estimates ˆ̀

Y=y(h) in Eq. 3 are the average
values of losses in the training data; they are also part of our certificate.

3.2 A Beta Prior for Binary Class Proportions

Now we turn to the function value and the gradient of the function f in Eq. 2.
Plugging a parametric prior P̂ into this function can allow us to compute these
terms efficiently, in closed forms. To this end, a Beta(α, β) prior is suitable for
binary classification because the Beta distribution is a conjugate prior of the
Bernoulli distribution, which in turn is a suitable model for the prevalence of
binary class labels. As a matter of convenience, the parameters α > 0 and β > 0
can be chosen such that the resulting distribution has some predetermined mean
and standard deviation; we believe that domain experts can often express their
prior beliefs in terms of these properties.

Plugging a Beta prior into the f function from Eq. 2 yields the following
components, where I is the regularized incomplete Beta function:

fα,β(m) =
2pS(m)α(1− pS(m))β

(α+ β)B(α, β)
+
(
pS(m)− α

α+ β

)(
2IpS(m)(α, β)− 1

)

∇mfα,β =
2IpS(m)(α, β)− 1

(m1 +m2)2
·
(
m2

−m1

)
(4)

Plugging Eq. 3 and 4 into Eq. 2 provides us with a gradient that we can
compute analytically from a certificate with a δy assignment, from sample sizes
m1 and m2 and from the prior parameters α and β. The negative gradient
−∇m ε∗ of the marginalized error ε∗ defines the class-wise numbers of samples
that our strategy acquires in the next data acquisition batch.

With small data volumes or with highly imbalanced classes, our strategy is
dominated by the ∆`∗ component; small classes need additional data until this
upper bound holds with some desired probability 1−δ. Constrastingly, when the
total data volume is large, our strategy is dominated by the f component; to this
end, a Beta prior favors class proportions that are close to its mean α

α+β . The
turning point between these two behaviors is well-founded in the PAC learning
theory that underlies the estimation of ∆`∗.

4 Experiments

The first introduction of the ACS problem is already accompanied by the pro-
posal of five heuristic ACS strategies [11]. In the following, we compare our own
strategy from Sec. 3 to these five heuristics:

proportional: always sample according to pT , provided that these true pro-
portions are already known at training time.
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uniform: always sample all classes in the same amount.
inverse: sample according to the inverse accuracy of a classifier that is trained

on earlier batches; the underlying assumption is that weak class-wise perfor-
mances can be counteracted with over-sampling.

improvement: sample according to the class-wise improvement in accuracy
that has occurred between the current iteration and the iteration before;
this strategy assumes that stable performances, i.e. performances that did
not change recently, will remain stable during future acquisitions.

redistriction: sample according to the class-wise number of training examples
for which the prediction has changed between the current iteration and the
iteration before; the assumption here is that stability can be promoted by
over-sampling classes with volatile decision boundaries.

Our theoretical analysis of the ACS problem [5, 4] reveals that the propor-
tional strategy is actually more than a heuristic; this strategy is indeed optimal
in the limit of data acquisition. However, it requires precise knowledge of pT ,
which practitioners might not be able to provide. Contrastingly, all other strate-
gies are entirely oblivious to the deployment proportions; they solely focus on
different notions of class-wise difficulties.

This shortcoming is also shared by an ACS strategy that aggregates utility
scores of pseudo-instances [9]. For now, we have excluded this approach from
our comparison, due to this property. For future work, however, we expect that
the method can overcome this limitation with a recent update of its utility
function [8]. This update supports a prior of pT , which is in line with our idea
of incorporating prior beliefs in ACS. Embedding the update in the original
pseudo-instance strategy, however, might not be trivial.

4.1 Methodology

We have parameterized the Beta prior of our strategy with a predetermined mean
and standard deviation, both set to the true value of pT . Accordingly, the mean
of the prior is well aligned with the true class proportions of the deployment
data; the uncertainty, however, is as large as possible.

In accordance to a reliable evaluation methodology [7], we present pairwise
differences between ACS strategies in terms of their statistical significance. A
comprehensive way of plotting such differences is through critical difference di-
agrams [6, 1], which compare multiple strategies over multiple data sets in a
statistically sound way. We employ accuracy as the underlying performance met-
ric and we conduct multiple trials to obtain an average performance value for
each combination of strategy and data set. These average performances are then
summarized through critical difference diagrams.

We define the trials via five repetitions of a three-fold cross validation. From
the imbalanced-learn1 package [10], we retrieve 13 data sets that have at least
150 minority class samples (to facilitate sampling) and at most 100 features (to

1 https://imbalanced-learn.org/stable/datasets/
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facilitate learning). We ensure comparability between all strategies by employing
the same classifier in all experiments, a logistic regression with default meta-
parameters. The data acquisition happens in up to 8 batches, each of which
acquires 50 new training examples. However, not all strategies reach the last
batch on all data sets; we stop each trial as soon as the strategy exhausts one
of the classes. We opted for this early stopping criterion to focus on “realistic”
acquisitions that happen due to free choices and not due to the fact that our
experiment only simulates class-dependent data acquisition with finite pools of
data. For the same reason, and due to weak performances on imbalanced data,
we did not evaluate the uniform strategy here. Due to the early stopping, it
becomes increasingly harder to detect significant differences; while the batches
three and four can be evaluated on all data sets, only 9 data sets remain for batch
eight. The implementation of our configurable experiments is available online2.

4.2 Results and Discussion

Fig. 2 presents the critical difference diagrams, as according to our evaluation
methodology. We see that our method, with access to an uncertain prior of pT ,
performs as well as the privileged strategy that knows pT precisely. Moreover,
our method outperforms all existing strategies which are oblivious to pT .

Fig. 3 traces this success back to the acquisition behavior that each strategy
exhibits. Our own strategy quickly approaches the true proportions pT of classes,
due to the perfect alignment between the mean of the prior and pT . For the
particular case of a Beta prior, this behavior is a reason for concern: if the
mean of this prior was not well aligned with pT , we might have acquired data
in mistaken class proportions; only if the mean of the Beta prior is sufficiently
accurate, we can expect the competitive behavior that Fig. 2 suggests. Future
research down this lane, e.g. with other types of prior distributions, is needed.

Fig. 3 further reveals two explanations for the poor performances of the
existing strategies: first, all of these strategies exhibit a central tendency of
staying close to the class proportions of the initial training set; second, each of
these strategies prefers class proportions of an increasingly large variability. Both
of these behaviors are due to the sole focus of these strategies on the perceived
difficulties of classes, which can differ considerably between the data sets.

5 Conclusion and Outlook

In contrast to existing ACS strategies, which either assume precise knowledge
about the deployment class proportions or no knowledge at all, we have advo-
cated the incorporation of a prior distribution that expresses beliefs about the
class proportions with any degree of (un)certainty. Our ACS strategy is well-
founded on PAC learning bounds which we have recently proposed for ACS [4].
Experiments suggest that our strategy performs as well as the fully certain case,
which, however, is harder to specify than an uncertain prior.

2 https://github.com/mirkobunse/AcsCertificates.jl
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Fig. 2. Critical difference diagrams evaluate our ACS strategy ( ) against existing
ACS strategies [11], one of which has privileged access to the true class proportions
pT ( ). The two plots present different values of pT . Each position on the vertical
axes corresponds to one critical difference diagram for one batch in the ACS data
acquisition loop. Horizontal positions correspond to the average ranks of strategies
across multiple data sets, as according to the average accuracy in multiple trials; lower
ranks are better. Horizontal connections between two or more strategies indicate that
a Wilcoxon signed-rank test is not able to detect significant differences between these
methods from the performances they exhibit.
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Fig. 3. Our ACS strategy ( ) quickly approaches the true proportions pT of classes
in terms of the Kullback-Leibler divergence dKL. Due to the uncertainty of the prior,
however, this divergence always remains above zero. The standard deviation of dKL, as
displayed by the error bars, increases considerably with the other strategies.

Future work on ACS should focus on strategies that support multi-class clas-
sification and regression. We identify the PAL-ACS framework [9] with a recent
update of its utility function [8] as a promising candidate in this direction.
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Abstract. This work explores the effect of noisy sample selection in
active learning strategies. We show on both synthetic problems and real-
life use-cases that knowledge of the sample noise can significantly improve
the performance of active learning strategies. Building on prior work, we
propose a robust sampler, Incremental Weighted K-Means that brings
significant improvement on the synthetic tasks but only a marginal uplift
on real-life ones. We hope that the questions raised in this paper are of
interest to the community and could open new paths for active learning
research.

1 Introduction

When training machine learning models, data quality is undoubtedly the most
fundamental requirement. A recent study [5] has shown that pervasive errors in
the test set of famous datasets could lead to selecting a suboptimal model. In
active learning, where a small number of samples are selected to be labeled by an
oracle, it becomes paramount as selecting samples of poor quality may worsen
the model’s performance.

Sample diversity in the training set is also essential and has been the main
focus of recent active learning strategies. Performance improvements come from
new ways of combining uncertainty and diversity in a single framework. Batch-
BALD [4] adds diversity by minimizing the joint mutual information between
batch samples. Core-sets [6] and [8] use a clustering approach to scatter the se-
lected samples across the sample space. The method proposed in [3] minimizes
the similarity between the samples of the batch while minimizing the similarity
with already labeled samples. The most common explanation for the observed
performance uplift when enforcing diversity is that a homogeneous set of sam-
ples contains much redundant information while a diverse one informs the model
with several classification patterns.

Enforcing diversity entails selecting samples where uncertainty is not maxi-
mal. Therefore, the selected samples are further away from the decision boundary
and easier to classify. We hypothesize that this side-effect of diversity contributes
to its success. In classification, mislabeled or very ambiguous samples – like five
that looks like six in MNIST – can be detrimental to the model [5]. As the den-
sity of such samples is higher near the classification boundary, we increase the
chances of obtaining meaningful samples by selecting samples further away.
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This paper proposes a metric to evaluate the quantity of such noisy samples
in a dataset, and we design a query strategy to avoid them. We first validate
our approach by showing the existence of these samples on a synthetic example
and observe that diversity-based methods are less likely to select those. We show
that our results obtained on synthetic data do not generalize well to real tasks,
propose an explanation and ideas to mitigate the problem.

2 Sample-noise robust strategies

In the following, D designates a dataset and h a probabilistic classifier. A sub-
script indicates the nature of datasets: L stands for labeled samples, U unlabeled,
T test, and B designates a batch of samples. Iterations are indicated with a su-
perscript when pertinent.

2.1 The pervasiveness of sample noise

In his seminal work on active learning, Settles [7] defines the most valuable
samples at iteration i as the one with the lowest maximum predicted probability
among classes:

lowest confidence(x) “ 1´ hi1pxq
With hik being the k-th probability predicted by the classifier learned at it-

eration i in descending order, so that hi1 is the maximum predicted probability
at iteration i. This definition assumes that each sample can reach a predicted
probability of 1. The difference between 1 and the predicted probability repre-
sents the information that the model is expected to gain when the sample gets
labeled.

However, classifiers do not always reach a predicted probability of 1 for all
samples. Fig. 1 shows the distribution of predicted probabilities on various stan-
dard tasks (see details in section 3). If some datasets like LDPA present an
almost uniform distribution, MNIST is very polarized towards 1 while having
outliers below 0.5.

We call noisy the samples located at the boundary between two classes, which
commonly have a low predicted probability for their class. Noisy samples can be
due to signal noise in the data that makes them hard-to-classify, labeling errors,
or to a genuine ambiguity such as a four that looks like a nine in MNIST (see
Fig. 1, right). Noisy samples are a challenge in active learning as they may get
overly selected by uncertainty-based methods despite their low quality. At a given
iteration of an active learning experiment, noisy samples occur for two reasons.
First, those samples may be easy to classify, but our current classifier lacks the
knowledge to do so. Labeling this sample could be useful as it would help the
model determine if the ideal decision boundary is close or not. This type of
uncertainty is called epistemic and can be reduced with more samples. However,
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Fig. 1. Distribution of prediction probabilities by a model in a 2-fold setting, and
examples of ambiguous samples on the MNIST dataset.

it may also be that this sample is ambiguous and that an ideal classifier would
not do any better. The noise is then due to aleatoric uncertainty that cannot be
reduced.

Let us call h8 this ideal classifier obtained by training the model on all
available training data . We use it to define the theoretical informed lowest
confidence sampler (denoted by IConfidence) based on the following score:

ιpxq “ h8pxq ´ hi1pxq
We expect this sampler to account for aleatoric uncertainty and therefore

focus only on reducing epistemic uncertainty. If h8 is unknown at experiment
time, it can be estimated in a research context where all labels are known. Such
an oracle can be useful in active learning research by providing a golden standard
of the maximum achievable accuracy in an experiment.

2.2 Measuring sample noise

Misclassified samples are a source of sample noise, and [5] proposes to iden-
tify them using human annotation. This approach can be considered a golden
standard but is hard to perform because of human labeling costs.

We previously suggested that sample noise could be measured as the maxi-
mum probability predicted by a good enough classifier. In order to extend this
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measure to a set of samples, we propose to rely on a metric previously introduced
in [1] called reverse batch accuracy or RBA for short. RBA measures how easy
samples are to classify by training a classifier on the test set and measuring its
accuracy on sample batches. The lower the RBA score, the harder samples are
to classify for the model, so the noisier are the samples.

2.3 Incremental Weighted K-Means (IWKMeans)

The goal of batch active learning strategies is to select batches of samples DB

representative of the unlabeled data DB „ DU . For a given notion of similarity
sim between batches, this leads to the following maximization objective:

argmaxDB
simpDB ,DU q (1)

In [8], the similarity is taken as ´ř
uPDU

dpDB , uq with d being the squared

distance to the closest point in the set dpDB , uq “ minbPDB
}b´ u}2. This corre-

sponds to the inertia objective of the K-Means clustering. The authors propose
to use it in a two-step procedure called Weighted K-Means (WKMeans) where
a set of samples are preselected using margin sampling, and then the final batch
is selected by using K-Means.

The above objective does not consider already labeled data and can lead to
suboptimal batches lying in regions of high-density of labeled samples. A natural
refinement is to additionally impose that the selected batch differs from already
labeled data, i.e. to minimise similarity simpDB ,DLq:

argmaxDB
simpDB ,DU q subject to argminDB

simpDB ,DLq
In the context of K-Means, minimizing this similarity is equivalent to prevent-
ing points close to labeled data to drag the centroids toward them. This is done
by adding the labeled points in the reference set used to compute distances in
the K-Means objective that becomes ´ř

uPDU
dpDB Y DL, uq. This translates

algorithmically by adding cluster centers corresponding to already labeled sam-
ples and keeping them fixed during optimization. We refer to this approach as
Incremental Weighted K-Means or IWKMeans for short, and it is described in
Alg. 1. IWKMeans tends to repel batch samples from already selected samples,
including the noisy ones. A similar approach is proposed in [3] where the values
in the matrix of similarity between batch and selected samples are minimized.

Potential concerns. The fact that the method repels all selected samples and
not only the noisy ones can be debated. We tested variants of this method that
repels noisy samples only, or noisy and very easy to classify samples as they can
also be considered detrimental [1]. Since all variants had similar performances,
we present here the simplest one. Another concern is the convergence of this
modified version of K-Means. It is easy to imagine in two dimensions how fixed
centers can prevent a moving one to reach its minimum. From our experience,
the K-Means++ initialization prevents most of these problems, and Fig. 2 proves
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Data: D0
L,D0

U

Result: hniter

for iÐ 1 to niter do
Margin sampling to pre-select βk samples among the unlabeled ones:
P i “ arg maxDi

U
1´ phi

1pxq ´ hi
2pxqq

Perform K-Means on P i with k moving and Di
L fixed centroids:

Di
B “ arg minDi

B
ĂP i

ř
xPP i dpDi

B YDi
L, xq

Update all sets and train the classifier:
Di`1

L Ð Di
L YDi

B Di`1
U Ð Di

UzDi
B hi`1 Ð hi `Di

B

end
Algorithm 1: IWKmeans algorithm

the method’s efficiency in a two-dimensional setting. For the sake of clarity and
concision, we refer the reader to this online study of IWKMeans convergence1.

3 Experiments

We perform active learning experiments on synthetic and natural datasets follow-
ing the framework described in [1]. Random sampling (Random) is the baseline.
We use KCenterGreedy (KCenter) as a proxy for Core-sets [6] since there is no
open implementation available. Note that the latter uses the activation of the
penultimate layer of neural networks, so we have adapted it to random forests
by considering a PCA-reduced forest embedding. We compare lowest confidence
sampling (Confidence) as described above to its informed counterpart IConfi-
dence. We also compare Weighted K-Means[8] (WKMeans) with β “ 10 to our
proposed IWKMeans. BatchBALD[4] was not considered due to its prohibitive
computational time of several hours compared to less than one minute for others.

We run ten iterations using five repeated two-fold cross-validation for each
task. Reported results include means and confidence intervals at 10th and 90th
quantiles. Cifar10 and Cifar100 tasks are run on ImageNet embeddings, Cifar10
SimCLR is run on embeddings learned using contrastive learning [2], and other
tasks are run using raw data. A Random Forest is used on the LDPA task, all
others use a multi-layer perceptron with hidden layers of size 128 and 64. More
details can be found on the code repository2 or in [1].

3.1 Synthetic problem with noisy samples

To create noisy samples, we design a task where samples from a given class
are not distinguishable from those of another class. We create a 10-class task
composed of spatially isolated blobs. Some blobs are composed of regular samples
that all belong to the same class. Other blobs are composed of samples randomly

1 https://dataiku-research.github.io/cardinal/auto_examples/plot_incr_

kmeans.html
2 https://github.com/dataiku-research/paper_ial_2021
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assigned to two different classes; we call them noisy blobs since their samples are
impossible to classify. We create a low-dimensional problem with 10000 samples,
2 features, 10 classes, 200 blobs, half of which are noisy. The active learning
experiment uses 20 batches of 20 samples. We also create a high-dimensional
problem with the same characteristics except that the data has 40 features, and
we generate 90 blobs, 30 of which are noisy. We use accuracy AUC over the whole
experiment to measure strategy performances. In this synthetic experiment, we
know which samples are noisy by construction and therefore report the ratio of
noisy samples (NSR) as a measure of sample noise instead of its proxy RBA.
Note that RBA is strongly correlated (ą 0.95) with NSR. Results are reported
in Fig. 2.
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Fig. 2. Test accuracy on synthetic problems.

Table 1. AUC and ratio of noisy samples per method. Standard deviation is in paren-
thesis. Best answers in terms of accuracy (higher) and Noisy Sample Ratio (lower) are
in bold.

Dataset Metric Random KCenter Confidence IConfidence WKMeans IWKMeans

Noisy LD AUC 38.6 (1.5) 47.9 (0.5) 26.7 (2.5) 24.5 (1.4) 44.0 (1.2) 48.1 (1.0)
Noisy LD NSR 50.3 (4.1) 42.4 (2.0) 38.9 (6.5) 10.1 (4.6) 43.5 (2.6) 39.3 (1.8)

Noisy HD AUC 50.7 (2.1) 61.7 (1.1) 58.0 (1.2) 55.0 (1.5) 60.6 (0.9) 63.2 (0.6)
Noisy HD NSR 35.0 (3.0) 24.5 (1.5) 25.6 (1.5) 3.2 (1.1) 33.4 (1.5) 26.9 (1.8)

In terms of performances, IWKMeans dominates all methods, which is what
was expected. KCenter is closely following which is surprising since the model
here is a random forest and we did not expect our quick adaptation to this
model to perform well. We would have expected Confidence to select more noisy
samples and perform poorly because of that. Instead, it seems to be penalized
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by its lack of diversity and exploration. IConfidence minimizes the number of
noisy samples selected, as expected, and yet it performs as badly as Confidence
for the same reasons. In the end, this experiment shows that diversity can be
as crucial as sample noise, and we expect a sweet spot to exist. Overall, we also
observe that IWKMeans seem to be more robust to noisy samples. More insights
are available in appendix Fig. A4.

Table 2. Area under the curve for accuracy (AUC) and reverse batch accuracy (RBA)
per method averaged over all repetitions. Standard deviation is in parenthesis. Bold
values are statistically significantly higher than the others based on a Friedman test
with Nemenyi post-hoc test which details are available in Fig. A5 in appendix.

Dataset Metric Random KCenter Confidence IConfidence WKMeans IWKMeans

LDPA AUC 59.0 (0.5) 57.2 (0.5) 51.9 (1.1) 51.2 (0.8) 63.1 (0.3) 63.6 (0.3)
LDPA RBA 67.1 (0.7) 49.3 (2.3) 51.6 (2.0) 98.9 (0.1) 67.8 (1.1) 67.6 (1.1)

Cifar10 AUC 80.9 (0.2) 82.0 (0.2) 81.9 (0.2) 82.9 (0.4) 81.8 (0.2) 81.6 (0.2)
Cifar10 RBA 91.5 (4.8) 81.5 (10.7) 80.5 (12.6) 94.9 (3.5) 85.2 (9.0) 85.3 (9.1)

Cifar10S AUC 88.8 (0.2) 89.2 (0.2) 89.5 (0.2) 89.6 (0.3) 89.4 (0.2) 89.5 (0.3)
Cifar10S RBA 93.5 (1.3) 87.5 (1.8) 80.0 (3.6) 96.5 (0.8) 86.2 (2.8) 87.9 (2.3)

MNIST AUC 90.9 (0.2) 91.2 (0.3) 93.5 (0.2) 93.8 (0.3) 94.2 (0.1) 94.2 (0.1)
MNIST RBA 97.6 (0.2) 96.6 (0.4) 92.3 (8.1) 97.7 (2.5) 88.1 (0.4) 86.9 (0.6)

Fashion AUC 82.4 (0.2) 79.3 (0.3) 83.5 (0.3) 85.0 (1.0) 84.3 (0.1) 84.3 (0.1)
Fashion RBA 88.1 (0.4) 90.8 (9.7) 82.3 (15.9) 91.3 (7.3) 70.6 (0.7) 69.2 (0.7)

Cifar100 AUC 48.5 (0.3) 48.3 (0.2) 46.2 (0.2) 50.8 (0.6) 48.9 (0.2) 49.0 (0.3)
Cifar100 RBA 69.4 (9.2) 71.2 (14.1) 55.6 (15.6) 88.8 (5.8) 70.7 (9.2) 70.0 (9.9)

3.2 Real datasets

We now analyze the samplers behaviors on our collection of real-life datasets.
Informed lowest confidence. IConfidence is equivalent or better than con-

fidence in all cases. It is also the best strategy for all tasks except MNIST and
LDPA. Note that the RBA of this method is much higher than the other strate-
gies. It reveals that getting too close to the decision boundary may not be re-
quired for good performance. Even more, this oracle method does not enforce
diversity but yet overpowers diversity enforcing methods. This questions the
fundamental hypothesis that enforcing diversity is mandatory to obtain good
performances. Further work will investigate further this sampler and try to re-
produce its behavior online with proxy metrics proposed in [1].

IWKMeans. WKMeans and IWKMeans bring a significant uplift against
random and all other uncertainty-based or unsupervised methods in all tasks ex-
cept CIFAR10 with SimCLR embeddings. IWKMeans outperforms WKMeans
on LDPA only, making it hard to draw a definitive conclusion on real tasks.
Further experiments are needed to investigate these behaviors. Early investiga-
tions suggest that the variation in density of noisy samples in multiclass settings
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(b) CIFAR 10, SimCLR embedding
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Fig. 3. Results on real datasets
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can tamper with adverse-to-noise samplers. For example, a general strategy can
be hard to find on the MNIST dataset where few noisy samples exist between
classes zero and four, while their density is high between classes three and five.

SimCLR embedding. An unexpected conclusion of these experiments is
that contrastive-based embeddings can bring an uplift significantly higher than
choosing the best query sampling strategy.

4 Conclusion

In active learning, noisy samples that are hard to classify by the model can be
detrimental to the performance. To prove this, we have designed a metric to
measure them and a synthetic problem to test the robustness of query strategies
to their presence. IWKmeans, the proposed noise-adverse sampling strategy, has
been proven effective on synthetic data, but not on real tasks where it marginally
improves WKMeans on which it is based. If IWKMeans’ performance seems
correlated to the number of noisy samples selected, there may be more than
meets the eye in this problem, and more investigations are needed. Our study
also shows that a sampler as simple as confidence sampling can outperform all
other samplers if informed by a good enough classifier. Whether or not this
uplift can be reproduced in real conditions using a proxy must be investigated
in further work.
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Abstract. In this paper we show that the combination of a Contrastive
representation with a label noise-robust classification head requires fine-
tuning the representation in order to achieve state-of-the-art perfor-
mances. Since fine-tuned representations are shown to outperform frozen
ones, one can conclude that noise-robust classification heads are indeed
able to promote meaningful representations if provided with a suitable
starting point. Experiments are conducted to draw a comprehensive pic-
ture of performances by featuring six methods and nine noise instances
of three different kinds (none, symmetric, and asymmetric). In presence
of noise the experiments show that fine tuning of Contrastive represen-
tation allows the six methods to achieve better results than end-to-end
learning and represent a new reference compare to the recent state of
art. Results are also remarkable stable versus the noise level.

1 Introduction

Deep Learning (DL) paradigm has proved very powerful in many tasks, however
recent papers [34, 49] have shown that “noisy labels” are a real challenge for
end-to-end deep learning architectures. Their test performance is found to dete-
riorate significantly even if they are able to learn perfectly the train examples.
This problem has attracted a lot of suggestion in many recent papers.

Zhang et al. [50] conducted experiments to analyze the impact of label noise
on deep architectures, and they found that the performance degradation mainly
comes from the representation learning rather than the classification part. It
therefore appears very difficult to learn a relevant representation in the presence
of label noise, in an end-to-end manner.

To tackle this problem, one option is to exploit an already existing repre-
sentation which has been learned in an unsupervised way. In particular, Self
Supervised Learning [24] (SSL) gathers an ensemble of algorithms which auto-
matically generate supervised tasks from unlabeled data, and, therefore to learn
representations from examples that are not affected by label noise. An example
of SSL algorithm is Contrastive Learning [21], where a representation of the data
is learned by making feature vectors from similar pictures (i.e. generated from
the same original picture by using two different transformer functions) to be
close in the feature space whereas feature vectors from dissimilar pictures are to
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be far apart. In [13], the authors propose to initialize the representation with a
pre-trained Contrastive Learning one, and then, to use the noisy labels to learn
the classification part and fine-tune the representation. It appears that this ap-
proach clearly outperforms the end-to-end architecture, where the representation
is learned from noisy labels.

But questions remain: is this performance improvement only attributable to
the quality of the Contrastive Representation used (i.e. the starting point of
fine-tuning)? Or is the fine-tuning step able to promote a better representation?
To answer these questions this paper examines the different possibilities to learn
a DL architecture in presence of label noise: (i) end-to-end learning (ii) learning
only the head part when freezing a contrastive representation and (iii) fine tuning
the later representation.

The rest of this paper is organized as follows. The section 2 provides a brief
overview of the main families of algorithms dedicated to fight the label noise
underlying the issue of preserving a good representation in spite of label noise.
Section 3 then describes the experimental protocol. The section 4 will present
the results and a deep analysis which will allow us to answer the questions above.
The last section raises an interesting conclusion and provides some perspectives
for future work.

2 Representation Preserving with Noisy Labels

This section presents a brief overview of the state of the art on learning deep
architecture with noisy labels emphasizing how these methods preserve, to some
extent, the learned representation in the presence of label noise. For an extended
overview, the reader may look [43].

2.1 Preserving by Recovering

The dominant approach to preserve the learned representation is to recover a
clean distribution of the data from the noisy dataset. It mostly consists in finding
a mapping function from the noisy to the clean distribution thanks to heuristics,
algorithms or machine learning models. Three different ways of recovering the
clean distribution are usually put forward [36]: (i) sample reweighting; (ii) label
correction and (iii) instance moving.

Recovering by Reweighting - The sample reweighting methodology aims at
assigning a weight to every samples such that the reweighted population behaves
as being sampled from the clean distribution. The Radon-Nikodym derivative
(RND) [35] of the clean concept with respect to the noisy concept is the function
that defines the perfect reweighting scheme. Many algorithms therefore rely on
providing a good estimation of the RND by learning it from the data using Meta
Learning [38] or minimizing the Maximum Mean Discrepancy of both distribu-
tions in a Reproducing kernel Hilbert space [8, 32]. Many of these methods are
inspired by the covariate shift problem [14, 20]. Other algorithms rely on dif-
ferent reweighting schemes that do not involve the RND as done, for instance,
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in Curriculum Learning [2]. They are described in details later in this section.
By doing sample reweighting, algorithms evaluate whether or not a sample is
deemed to have been corrupted and assign a lower weight to a suspect sample
so that its influence on the training procedure is lowered. The hope is that clean
samples are sufficient to learn high-quality representations

Recovering by Relabelling - Another way to recover the clean distribution
from the noisy data is to correct the noisy labels. One great advantage over
sample reweighting is that corrected samples can be fully used during the training
procedure. Indeed, when a sample is corrected, it will count as one entire sample
in the training procedure (gradient descent for example), whereas a reweighted
noisy sample would get a low weight and would not be used significantly in the
training procedure. Thus, when done effectively, label correcting might get better
performance. Meta Label Correction (MLC) [42] is an example of this approach
where the label correction is done thanks to a model learned using meta learning.
One downside of label correction, however, is that the label of a clean sample
can get “corrected” or the label of a noisy sample can get changed to a wrong
label. Label correcting algorithm assign the same weight to all training examples,
even though they might have “corrected” a label based on shaky assumptions.
By contrast, Sample reweighting will assign a low weight if the algorithm is not
confident in whether the sample is clean or noisy.

Recovering by Modifying - A third way to recover the clean distribution is
by modifying the sample itself so that its position in the feature space gets closer
or is moved within an area for its label that seems more appropriate (i.e. obeying
regularisation criteria). Finding a transformation in the latent space itself has
the advantage to require less labelled samples, or even none at all, as the work
is performed on distance between samples themselves, like for example in [40].

2.2 Preserving by Collaboration

Multiple algorithms and agreements measures have been used in many sub-fields
of machine learning such as ensembling [4,10,11] or semi supervised learning [3,
48]. They can be adapted to learn with noisy labels by relying on a disagreement
method between models in order to detect noisy samples. When the learned
models disagree on predictions for the label of a sample, this is considered as
a sign that the label of this sample may be noisy. When the models used are
diverse enough, these methods are often found to be quite efficient [17,46].

However these algorithms suffer from learning their own biases and diversity
needs to be introduced in the learning procedure. Using algorithms from different
classes of models and different origins can increase the diversity among them by
introducing more source of biases [28]. Alternating between learning from the
data and from the other models is another way to combat the reinforcement of
the models’ biases [46]. These algorithms rely on carefully made heuristics to be
efficient.

Contrastive Representations for Label Noise Require Fine-Tuning 91



4 P. Nodet et al.

2.3 Preserving by Correcting

When learning loss base models, such as neural networks, on label noise, the
loss value of a training example can be a discriminative feature to decide if
its label is noisy. Deep neural networks seem to have the property that they
first learn general and high level patterns from the data before falling prey
to overfitting the training samples, especially in the presence of noisy labels
[1, 30]. As they are “learned” at a later stage, these noisy examples are often
associated with a high loss value [16] which may then highly influences the
training procedure and perturb the learned representation [49]. A way to combat
label noise is accordingly to focus first on small loss and easy examples and
keep the high loss and hard examples for the end of the training procedure.
Curriculum Learning [2] is a way to employ this training schema with heuristic
based schemes [9, 22, 27, 31] or schemes learned from data [23, 41]. This class of
algorithm has the same properties as the ones relying on importance reweighting,
but maybe more adapted to training with iterative loss based algorithms such
as neural networks or linear models.

Instead of filtering or reweighting samples based on their loss values, one
could try to correct the loss for these samples using the underlying noise pat-
tern. Numerous method have been doing so by estimating the noise transition
matrix for Completely at Random (i.e uniform) and At Random (i.e class de-
pendent) noise [19, 37, 42]. This category of algorithms are still to be tested on
more complex noises scenarios such as Not at Random (i.e instance and class
dependent) noise.

2.4 Preserving by Robustness

The last identified way to preserve the learned representation of a deep neural
network in presence of label noise is by using a robust or regularized training
procedure. This can take multiple forms from losses to architectures or even
optimizers. One of them are Symmetric Losses [5,12,39]. A symmetric loss has the
property that: ∀x ∈ X ,

∑
y∈Y L(f(x), y) = c where c ∈ R. These losses have been

proven to be theoretically insensitive to Completely at Random (CAR) label
noise. Recently, modified versions of the well-known Categorical Cross Entropy
(CCE) loss have been designed in order to be more robust and thus more resistant
to CAR label noise as is the case for the Symmetric Cross Entropy (SCE) loss [45]
or the Generalized Cross Entropy Loss (GCE) [51]. Both of these rely on using
the CCE loss combined with a known more robust loss such as the Mean Absolute
Error (MAE). However, the resulting algorithms often underfit in presence of too
few label noise while they are unable to learn a correct classifier with too much
label noise.

All these approaches still adopt the end-to-end learning framework, aiming
at fighting the effects of label noise by preserving the learned representation.
However they fail to do so in practice: decoupling the learning of the representa-
tion, using Self Supervised (SSL) learning, from the classification learning stage
itself and then fine tuning the representation with robust algorithms is beneficial

92 P. Nodet, V. Lemaire, A. Bondu, A. Cornuéjols
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for the model performance [13,50]. A natural question arises about the origin of
the performance improvements, and the ability of these algorithms to learn or
promote a good representation in presence of label noise. If robust algorithms
are unable to learn a representation it should be even better to freeze the SSL
representation instead of fine tuning it.

In order to assess the origin of the improvements for different classes of
algorithms and different noise levels, we compare the above-mentioned end-to-
end approaches against each other when the representation is learned in a self-
supervised fashion by either fine tuning or freezing the representation when the
classification head is learned. Thus, any difference in the performance would be
attributable to the difference in the representation learnt.

3 Experimental Protocol

In [50], the authors showed that when using end-to-end learning, fine tuning the
representation on noisy labels harms a lot the final performance, while learn-
ing a classifier on frozen embeddings is quite robust to label noise and leads
to significant performance improvements over state-of-the-art algorithms if the
representation is learned using trustful examples. The latter can be found for in-
stance using confidence and loss value. Nonetheless it is arguable whether these
improvements were brought by an efficient self-supervised pretraining (SSL) with
SimCLR [6], a contrastive learning method, or by the classification stage of the
REED algorithm [50].

The goal of the following experimental protocol is to assess and isolate the
role of the contrastive learning stage, in the performance that can be achieved
by representative methods as presented in Section 2 about state of the art ap-
proaches. Specifically, several RLL algorithms have been chosen, one from each
of the highlighted families (see Section 2 and Table 1). For each, the difference in
performance between using contrastive learning to learn the representation and
the performance reported with the original end-to-end algorithms is measured.
These experiments seek to highlight the impact of each RLL algorithms and
assess if these are able to promote a better representation than the pretrained
contrastive representation through fine-tuning.

The rest of this section describes the experimental protocol used to conduct
this set of experiments.

3.1 The tested Algorithms

Section 2 presented an overview of the state of the art for learning with label
noise organized around families of approaches that we highlighted. Since our
experiments aim at studying the properties of each of these approaches, we
selected one representative technique from each of these families as indicated in
the following.

– In the first family of techniques (recover the clean distribution), the algo-
rithms re-weight the noisy examples or attempt to correct their label. One
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of these algorithm uses what is called Dynamic Importance Reweigthting
(DIW). It reweights samples using Kernel Mean Matching (KMM) [14, 20]
as is done in covariate shift with Density Ratio Estimators [44]. Because this
algorithm adapts well-grounded principles to end-to-end deep learning, it is
a particularly relevant algorithm for our experiments.

– CoLearning (CoL) [46] is a good representative of the family of collaborative
learning algorithms. It uses disagreements criteria to detect noisy labels and
is tailored for end-to-end deep learning where the two models are branches
of a larger neural networks. It appears to be one of the best performing
collaborative algorithm while not resorting to complex methods such as data
augmentation or probabilistic modelling like the better known DivideMix
[29].

– The third identified way to combat label noise is by mitigating the effect
of high loss samples [16] by either ditching them or using a loss correction
approach. Curriculum learning is often used to remove the examples that
are associated with high loss from the training set. (MWNet) [41] is one
the most recent approach using this technique, which learns the curriculum
from the data with meta learning. Besides, Forward Loss Correction (F-
Correction) [37] and Gold Loss Correction (GLC) [19] are two of the most
popular approaches to combat label noise by correcting the loss function.
Both seek to estimate the transition matrix between the noisy labels to the
clean labels, the first technique using a supervised approach thanks to a clean
validation set, and the second one in an unsupervised manner. Even though
many extensions of these algorithm have been developed since then [42,47], in
these experiments, we use F-Correction and GLC since they are way simpler
and almost as effective.

– Lastly, in recent literature, a new emphasis is put on the research of new loss
functions that are conducive to better risk minimization in presence of noisy
labels for robustness purpose. For example, [5, 39] show theoretically and
experimentally that when the loss function satisfies a symmetry condition,
described below, this contributes to the robustness of the classifier. The
Generalized Cross Entropy (GCE) [51] is the robust loss chosen in this
benchmark as it appears to be very effective.

A note about additional requirements: These algorithms may have additional
requirements, mostly some knowledge about the noise properties. These are de-
scribed in table 1. In the experiments presented below, the clean validation
dataset is set to be 2 percent of the total training data, like in [41, 53], and the
noise probability is provided to the algorithms that need it.

A note about the choice of the pretrained architecture: We chose to use Sim-
CLR for Self-Supervised Learning (SSL) as done in [50].

SimCLR is a contrastive learning algorithm that is composed of three main
components (See Figure 1): a family of data augmentation T , an encoder network
f(·) and a projection head g(·). Data augmentation is used as a mean to generate
positive pairs of samples: a single image x is transformed into two similar images
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Algorithms (Date) Noise Ratio Clean Validation Family (Section)

DIW (2020) × X Reweighting (2.1)
CoLearning (2020) X × Collaborative Learning (2.2)
MWNet (2019) × X Curriculum Learning (2.3)
F-Correction (2017) × × Loss Correction (2.3)
GLC (2018) × X Loss Correction (2.3)
GCE (2018) × × Robust Loss (2.4)

Table 1. Taxonomy of robust deep learning algorithms studied in this paper. The
Noise Ratio column corresponds to whether the algorithm needs the noise rate (X)
to learn from noisy data or not (×). The Clean Validation column corresponds to
whether the algorithm needs an additional clean validation dataset (X) to learn from
noisy data or not (×).

x̃i and x̃j by using a data augmentation module T with different seeds t and t′.
Then the two images go through an encoder network f(·) to extract an image
representation h, such as hi = f(x̃i) and hj = f(x̃j). Finally a projection head
g(.) is used to train the contrastive objective in a smaller sample space z, with
zi = g(h̃i) and zj = g(h̃j). The contrastive loss used is called the NT-Xent, the
normalized temperature-scaled cross entropy loss, and defined by the following
formula:

`(zi, zj) = − log
exp(sim(zi, zj)/τ)

∑2N
k=1 exp(sim(zi, zk)/τ)

(1)

where τ is the temperature scaling and sim is the cosine similarity. The final
loss is computed across all positive pairs, both (i, j) and (j, i), in a mini-batch.
When the training of SimCLR is complete, the projection head g(.) is dropped
and the embeddings h are used as an image representation in downstream tasks.

Other SSL algorithms could have been used as well, such as Moco [7, 18] or
Bootstrap Your Own Latent (BYOL) [15]. However, we do not expect that the
main conclusions of the study would be much changed.

3.2 Datasets

The datasets chosen in this benchmark are two image classification datasets
namely CIFAR10, CIFAR100. They are two famous image classification datasets,
containing only clean examples and as such, we will simulate symmetric (Com-
pletly at Random) and asymmetric (At Random) noise as defined later in section
3.3. These benchmarks should be extended to other image classification datasets
such as FashionMNIST, Food-101N, Clothing1M and Webvision and to other
classification tasks such as text classification or time series classification.
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Fig. 1. Figure from [6]: “A simple framework for contrastive learning of visual rep-
resentations. Two separate data augmentation operators are sampled from the same
family of augmentations (t ∼ T and t′ ∼ T ) and applied to each data example to
obtain two correlated views. A base encoder network f(·) and a projection head g(·)
are trained to maximize agreement using a contrastive loss. After training is completed,
we throw away the projection head g(·) and use encoder f(·) and representation h for
downstream tasks.”

3.3 Simulated Noise

As datasets chosen in Section 3.2 contains clean labels, label noise will be intro-
duced synthetically on the training samples. Two artificial noise models will be
used, a symmetric (Completely at Random) and asymmetric (At Random) noise.
Symmetric noise corrupts a label from one class to any other classes with the
same probability, meanwhile the asymmetric corrupts a label to a similar class
only. Similar classes are defined through class mappings. For CIFAR-10, the
class mappings are TRUCK → AUTOMOBILE, BIRD→ AIRPLANE, DEER
→ HORSE, CAT ↔ DOG. For CIFAR-100, the class mappings are generated
from the next class in that group (where 100 classes are categorized into 20 super-
classes of 5 classes). These class mappings are the ones introduced in [37,51].

3.4 Implementation Details

We give some implementation details for reproducibility and / or a better un-
derstanding of the freezing process in the experiments:

– On CIFAR10 and CIFAR100 the SGD optimizer will be used to train the
final Multinomial Logistic Regression with an initial learning rate of 0.01,
a weight decay of 1e−4 and a non-Nesterov momentum of 0.9. The learning
rate will be modified during training with cosine annealing [33]. The batch
size is 128.

– When doing the ”Freeze” experiments, the weights of SimCLR from [13]
will be used and will not be modified during the training procedure. All
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the weights up to before the projection head of SimCLR are used, then the
dimension output of the feature encoder is 2048 for CIFAR10 and CIFAR100.
The classification architecture is composed by a single linear layer with an
output dimension of 10 (or 100), corresponding to the number of classes.
Thus when trained with the Categorical Cross Entropy it corresponds to a
usual logistic regression. This classifier is going to be learned with multiple
algorithms robust to label noise. These algorithms are not modified from
their original formulation.

– The ”Fine Tuning” experiments follow the same implementation as the
”Freeze” experiments. However the weights of the same pretrained SimCLR
encoder are allowed to be modified by backpropagation.

– Based on their public implementation and / or article we re-implemented
all the algorithm tested (DIW [8], CoL [46], MWNet [41], F-Correction [37],
GLC [19] and GCE [51]). All these re-implemented algorithms will soon be
available as an open source library easily usable by researchers and practi-
tioners. These custom implementations have been verified to produce, under
the same condition stated in the corresponding original papers (noise mod-
els, network architectures, optimizers, ...), the same results or results in the
interval of confidence (for clean or noisy labels). We may thus be confident
that results in the different parts of the Tables 2 and 3 are comparable.

– The experiments have been run multiple times for all algorithms, some
datasets, some noise models and some noise ratios with different seeds to
see the seed impact on the final performance of the classifier. For all algo-
rithms, the standard deviation of the accuracy was less than 0.1 percent.

4 Results

This section reports the results obtained using the protocol described in section
3. They are presented in the tables 2 and 3 corresponding to the two tested
datasets CIFAR10 and CIFAR100. Each table is composed of four rows subsec-
tions corresponding to the different types of representation used, which can be
learned in a End-to-End manner (A), be taken from an already existing SSL
model, either Frozen (B) or Fine tuned (C). Moreover they are composed of two
columns subsections corresponding to the noise model used to corrupt samples
(symmetric or asymmetric).

These tables present the results from different studies: (A) The first part
of these tables about “End-to-End learning” are results reported in the respec-
tive papers [8, 19, 37, 41, 46, 51] or reported in [13]; (B) The second part about
“Freeze” experiments conducted in this paper, are made by re-implementing the
referred algorithms from scratch; (C) The “Fine Tuning” experiments are results
reported in [13].

The interpretation of the Table 2 and 3 will be done in two times, first
a comparison between whole blocks (as (A) against (B)) will give insights on
how deep neural networks learn representations on noisy data and how robust
algorithms helps to improve the learning process or helps to preserve a given
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Algorithms
CIFAR10

Clean Symmetric Asymmetric
0 20 40 60 80 90 95 20 40

DIW [8]

End-to-End (A)

80.4 76.3 84.4
CoL [46] 93.3 91.2 49.2 88.2 82.9
MWNet [41] 95.6 92.4 89.3 84.1 69.6 25.8 18.5 93.1 89.7
F-Correction [37] 90.5 87.9 63.3 42.9 90.1
GLC [19] 95.0 95.0 95.0 95.0 90.0 80.0 76.0
GCE [51] 93.3 89.8 87.1 82.5 64.1 89.3 76.7

DIW

Freeze (B)

91.3 91.2 90.8 90.5 89.8 89.2 88.1 91.0 90.6
CoL 91.1 91.1 90.9 90.6 89.9 89.4 88.8 90.8 89.9
MWNet 91.3 91.2 90.8 90.6 89.8 88.2 82.4 90.9 86.4
F-Correction 90.8 90.5 90.1 89.6 88.4 88.0 88.1 88.9 88.4
GLC 90.7 89.7 90.0 89.5 89.0 88.5 88.3 88.7 88.2
GCE 91.1 90.8 90.7 90.5 90.4 90.0 89.1 90.9 89.0

DIW

Fine Tuning (C)

94.5 94.5 94.5 94.5 94.0 92.0 89.1 94.2 93.6
CoL 93.9 94.6 94.6 94.2 93.6 92.7 91.7 94.0 93.7
MWNet [13] 94.6 93.9 92.9 91.5 90.2 87.2 93.7 92.6
F-Correction 94.0 93.4 93.1 92.9 92.3 91.4 90.0 93.6 92.8
GLC 93.5 93.4 93.5 93.1 92.0 91.2 88.3 93.2 92.1
GCE [13] 94.6 94.0 92.9 90.8 88.4 83.8 93.5 90.3

Table 2. Final accuracy for the different models on CIFAR10 under symmetric and
asymmetric noises and multiple noise rates.

representation. Then in a second time comparisons in a given block will be made
against multiple algorithms to see how well these conclusions works on different
preservation families given in Section 2.

First, we observe when comparing section (A) and (B) from both tables
that ”Freeze” experiments consistently outperforms ”End-to-End” experiments
as soon as the data stop being perfectly clean. Using a pretrained self-supervised
representation such as SimCLR improves significantly the performances of the
final classifier. Outside of well controlled and perfectly clean datasets all selected
algorithms are not able to learn a good enough representation from the noisy
data and are beaten by a representation learned without resorting to using given
labels. Robust Learning to Label noise algorithms, especially designed for deep
learning, can preserve an already good representation from noisy labels but are
unable to learn a good representation from scratch.

Then, we observe when comparing section (B) and (C) from both tables that
”Fine Tuning” experiments consistently outperforms ”Freeze” at noise rates
less than 80 for the symmetric case and less than 40 for the asymmetric case.
The nature of the final classifier used after the learned representation partially
explains these results; we used a single dense layer (see Section 3.4). This classifier
may under-fit as the number of learnable parameters might be too low to actually
fit complex datasets such as CIFAR10 and CIFAR100 even with a good given
representation. Using more complex classifiers such as Multi-Layer Perceptron
could have led to comparable performances than fine tuning even for low noise
rates. This point leaves room for further investigation. Having the possibility to
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Algorithms
CIFAR100

Clean Symmetric Asymmetric
0 20 40 60 80 90 95 20 40

DIW [8]

End-to-End (A)

53.7 49.1 54.0
CoL [46] 75.8 73.0 32.8
MWNet [41] 79.9 74.0 67.7 58.7 30.5 5.2 3.0 71.5 56.0
F-Correction [37] 68.1 58.6 19.9 10.2 64.2
GLC [19] 75.0 75.0 75.0 62.0 44.0 24.0 12.0 75.0 75.0
GCE [51] 76.8 66.8 61.8 53.2 29.2 66.6 47.2

DIW

Freeze (B)

65.6 65.1 64.0 62.9 59.0 53.3 42.5 61.7 49.0
CoL 65.8 65.0 64.0 63.4 62.3 60.0 57.0 64.1 58.6
MWNet 66.6 66.6 66.2 65.4 63.7 59.8 49.5 64.8 54.5
F-Correction 66.5 64.7 61.8 58.8 54.5 51.7 50.8 58.4 56.5
GLC 58.5 57.8 52.3 51.1 41.6 40.1 35.3 51.4 50.3
GCE 63.5 62.9 61.5 60.0 55.7 51.0 49.9 51.2 48.3

DIW

Fine Tuning (C)

73.8 74.9 74.9 74.5 70.2 62.3 50.4 71.8 62.8
CoL 73.7 74.8 74.8 75.0 73.2 67.3 62.0 72.6 70.3
MWNet [13] 75.4 73.2 69.9 64.0 57.6 44.9 72.2 64.9
F-Correction 69.8 70.1 69.1 69.5 66.9 62.1 57.0 70.3 66.2
GLC 69.7 69.4 68.6 62.5 50.4 32.1 18.7 68.2 62.3
GCE [13] 75.4 73.3 70.1 63.3 55.9 45.7 71.3 59.3

Table 3. Final accuracy for the different models on CIFAR100 under symmetric and
asymmetric noises and multiple noise rates.

fine tune the representation to better fit the classification task induces the risk
to actually degrade it.

Outside of well controlled and perfectly clean datasets, practitioners should
first consider to learn a self-supervised representation and then either fine tune
it or freeze it with classifier learned with robust algorithms. Self-Supervised
Learning (SSL) algorithm such as SimCLR seems to perfectly fit this task, but
other SSL algorithms could be used and explored.

Another observation from this benchmark is about the difference in perfor-
mance between all the tested algorithms. Indeed, if we consider part (B) of Table
2, for both noise models and all noise rates, the performances between the al-
gorithms are close, around 0.1 point in accuracy with some exceptional data
points. It shows that even complex algorithms have a hard time beating simpler
approaches when they are compared with an already learned representation.

The same observation can be done for the part (B) of Table 3 (for CIFAR
100), especially for the symmetric noise. However the differences between al-
gorithms are better put in perspective with this more complex dataset which
contains 10 time more classes and 10 time less samples per classes. We notice
that some algorithms start to struggle at high symmetric noise rate or for the
more complex asymmetric noise model. For example, GLC is under-performing
against competitors for all cases and is under-performing against its end-to-end
version. One reason could be the small size used for the validation dataset as the
transition matrix is evaluated on it in a supervised manner. The small number of
samples may impact the performance of the transition matrix estimator. Much
less so than the estimator proposed by F-Correction which seems to perform fine
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even on CIFAR100 for all symmetric noises, yet only above average on asym-
metric noises. Seeing F-Correction and GLC not performing well on asymmetric
noise for both dataset is surprising as these algorithms were both particularly
designed for this case.

Lastly we observe on both Tables 2 and 3 that algorithms with additional
knowledge on the noise model (see Table 1) have an edge over algorithms that
do not, especially on the hardest cases with more classes, higher noise ratio or
more complex noise model. CoL requires the noise ratio as its efficiency relies
on the hyper parameters value corresponding to the injection of pseudo labels
and confidence in model prediction that are dependent of the noise ratio. CoL
emerges among the most well rounded and most efficient algorithm for all noise
models, noise rates and datasets thanks partially to this additional knowledge.
On the other hand, GLC, DIW and MWNet require an additional clean valida-
tion dataset in order to estimate the noise model or a proxy of it to correct the
learning procedure on the noisy dataset. We could expect these algorithms to
perform better than CoL as they would be able to deal with more complex noise
models and have a fine-grained policy for correcting noisy samples. Still these
algorithms are not able in these experiments to get a better accuracy than CoL
and perform on par with it.

Finally we need to emphasize that only two datasets have been used in this
study, specially two datasets about image classification. In order to stronger our
claims, more experiments should be conducted.

5 Conclusion

In this paper our contribution was to suggest new insights about decoupling
against end-to-end deep learning architectures to learn, preserve or promote a
good representation in case of label noise. We presented (i) a new view on a
part of the state of the art: the ways to preserve the representation (ii) and an
empirical study which completes the results and the conclusions of other recent
papers [13,50,52]. Experiments conducted draw a comprehensive picture of per-
formances by featuring six methods and nine noise instances of three different
kinds (none, symmetric, and asymmetric). Our added value for the empirical
study is the comparison between the ”freeze” and the ”fine tuning” results.

One conclusion we are able to draw is that designing algorithms that preserve
or promote good representation under label noise is not the same as designing
algorithms capable of learning from scratch a good representation under label
noise. To make end-to-end learning succeed in this setup researchers should take
a better approach when designing such algorithms.

Another element that emerged from the experiments was the efficiency of
both freeze and fine tuning approaches in comparison to the end-to-end learning
approach. Even the most complex algorithms such as DIW when trained in an
end-to-end manner are not able to beat simple robust loss as GCE when trained
with fine tuning. It questions usual experimental protocols of Robust Learning
to Label (RLL) noise papers and questions the recent advances in the field.
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Evaluating RLL algorithms with pretrained architectures should be the norm as
it is easy to do so and the most efficient way for practitioners to train model on
noisy data.

One more strong point in this conclusion is that in presence of noise the
experiments show that fine tuning of Contrastive representation allows the six
methods to achieve better results than their end-to-end learning version and
represent a new reference compare to the recent state of art. Results are also
remarkable stable versus the noise level.

Since fine-tuned representations are shown to outperform frozen ones, one can
conclude that noise-robust classification heads are indeed able to promote mean-
ingful representations if provided with a suitable starting point (contrastingly to
readers of [13,52] who might prematurely jump to the inverse conclusion).

However these experiments could be extended to be more exhaustive in two
ways: (i) SimCLR is not the only recent and efficient contrastive learning algo-
rithms, MOCO [7, 18] or Bootstrap Your Own Latent (BYOL) [15] could have
been used as said earlier in the paper, but other self-supervised or unsupervised
algorithms could have been used such as Auto-Encoder [26] or Flow [25]; (ii)
experiments could be extended to datasets from other domains such as text
classification or time series classification.
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Abstract. One area where active learning plays an important role is
black-box optimization of objective functions with expensive evaluations.
To deal with such evaluations, continuous black-box optimization has
adopted an approach called surrogate modelling or metamodelling, which
consists in replacing the true black-box objective in some of its evalu-
ations with a suitable regression model, the selection of evaluations for
replacement being an active learning task. This paper concerns surrogate
modelling in the context of a surrogate-assisted variant of the continuous
black-box optimizer Covariance Matrix Adaptation Evolution Strategy.
It reports the experimental investigation of surrogate models combining
artificial neural networks with Gaussian processes, for which it considers
six different covariance functions. The experiments were performed on
the set of 24 noiseless benchmark functions of the platform Comparing
Continuous Optimizers COCO with 5 different dimensionalities. Their
results revealed that the most suitable covariance function for this com-
bined kind of surrogate models is the rational quadratic followed by the
Matérn 5

2
and squared exponential. Moreover, the rational quadratic and

squared exponential covariances were found interchangeable in the sense
that for no function, no group of functions, no dimension and combina-
tion of them, the performance of the respective surrogate models was
significantly different.

Keywords: active learning, black-box optimization, artificial neural net-
works, Gaussian processes, covariance functions

1 Introduction

One area where active learning plays a very important role is black-box opti-
mization, in particular optimization of black-box objective functions with ex-
pensive evaluations. It is immaterial whether that expensiveness is due to time-
consuming computation like in long simulations [15], or due to evaluation in
costly experiments like in some areas of science [3]. To deal with such ex-
pensive evaluations, continuous black-box optimization has in the late 1990s
and early 2000s adopted an approach called surrogate modelling or metamod-
elling [6, 12, 14, 32, 40, 43, 46]. In this case, the goal of the surrogate model is to
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decrease the total number of evaluations of the true objective function. Basi-
cally, a surrogate model is any regression model that with a sufficient fidelity,
approximates the true black-box objective function and replaces it in some of its
evaluations. And the decision in which points to evaluate the expensive black-
box objective function, and in which to use its surrogate approximation is an
active learning task.

This work-in-progress paper concerns surrogate modelling in the context of
a state-of-the-art method for continuous black-box optimization, the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES ) [20, 23]. It reports the first
results of our investigation of surrogate models based on combining artificial
neural networks (ANNs) with Gaussian processes (GPs). This investigation has
been motivated by the importance of surrogate models based on ANNs alone
[19,27–29,40,50] and especially on GPs alone [5,6,12–14,31,32,35,47,48], as well
as by the high popularity of ANNs in the last 10–15 years. To our knowledge, this
is the first time that ANN+GP combinations have been investigated for possible
application in surrogate modelling. On the other hand, research into combining
parametric ANN models with nonparametric GP models has been around for
nearly a decade, at first due to the increasing popularity of neural networks,
later also due to recent theoretical results concerning relationships of asymptotic
properties of important kinds of ANNs to properties of GPs [33, 37, 39]. The
integration of GP with neural learning has been proposed on two different levels:
(i) Proper integration of an ANN with a GP, in which the GP forms the final,

output layer of the ANN [8,49].
(ii) Only a transfer of the layered structure, which is a crucial feature of ANNs,

to the GP context, leading to the concept of deep GPs (DGPs) [7,11,24,25].
In the reported investigation, we employed proper integration, using a GP as
the final layer of an ANN.

The rest of the paper is organized as follows. In the next section, the theo-
retical fundamentals of GP regression and integration with ANNs are recalled.
Section 3 describes active learning in a surrogate-assisted variant of CMA-ES.
Replacing GPs in that variant with several ANN+GP combinations is then ex-
perimentally tested in Section 4. Finally, the concluding Section 5 also outlines
our future research plans.

2 Gaussian Processes and Their Integration with Neural
Networks

2.1 Gaussian Processes

A Gaussian process on a set X ⊂ Rd, d ∈ N is a collection of random variables
(f(x))x∈X , any finite number of which has a joint Gaussian distribution [45]. It
is completely specified by a mean function mGP : X → R, typically assumed
constant, and by a covariance function κ : X × X → R such that for x, x′ ∈ X ,

Ef(x) = mGP (1)

cov(f(x), f(x′)) = κ(x, x′). (2)
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Therefore, a GP is usually denoted GP(mGP, κ) or GP(mGP, κ(x, x′)).
The value of f(x) is typically accessible only as a noisy observation y =

f(x) + ε, where ε is a zero-mean Gausssian noise with a variance σn > 0. Then

cov(y, y′) = κ(x, x′) + σ2
nI(x = x′), (3)

where I(proposition) equals for a true proposition 1, for a false proposition 0.
Consider now the prediction of the random variable f(x?) in a point x? ∈ X

if we already know the observations y1, . . . , yn in points x1, . . . , xn. Introduce
the vectors x = (x1, . . . , xn)>, y = (y1, . . . , yn)> = (f(x1) + ε, . . . f(xn) + ε)>,
k? = (κ(x1, x?), . . . , κ(xn, x?))

> and the matrix K ∈ Rn×n such that (K)i,j =
κ(xi, xj)+σ

2
nI(i = j). Then the probability density of the vector y of observations

is

p(y;mGP, κ, σ
2
n) =

exp
(
− 1

2 (y −mGP)>K−1(y −mGP)
)

√
2π det(K)

, (4)

where det(A) denotes the determinant of a matrix A. Further, as a consequence
of the assumption of Gaussian joint distribution, also the conditional distribution
of f(x?) conditioned on y is Gaussian, namely

N
(
mGP(x?) + k?K

−1(y −mGP), κ(x?, x?)− k>? K−1k?
)
. (5)

According to (3), the relationship between the observations y and y′ is deter-
mined by the covariance function κ. In the reported research, we have considered
6 kinds of covariance functions, listed below. In their definitions, the notation
r = ‖x′ − x‖ is used, and among the parameters of κ, aka hyperparameters of
the GP, frequently encountered are σ2

f , ` > 0, called signal variance and charac-
teristic length scale, respectively. Other parameters will be introduced for each
covariance function separately.
(i) Linear : κLIN(x, x′) = σ2

0 + x>x′, with a bias σ2
0 .

(ii) Quadratic is the square of the linear covariance: κQUAD(x, x′) = (σ2
0 +

x>x′)2.

(iii) Rational quadratic: κRQ(x, x′) = σ2
f

(
1 + r2

2α`2

)−α
, with α > 0.

(iv) Squared exponential : κSE(x, x′) = σ2
f exp

(
− r2

2`2

)
.

(v) Matérn 5
2 : κMA5(x, x′) = σ2

f

(
1 +

√
5r
` + 5r2

3`2

)
exp

(
−
√
5r
`

)
.

(vi) One composite covariance function, namely the sum of κSE and κQUAD:
κSE+Q(x, x′) = κSE(x, x′) + κQUAD(x, x′).

2.2 GP as the Output Layer of a Neural Network

An approach integrating a GP into an ANN as its output layer has been inde-
pendently proposed in [8] and [49]. It relies on the following two assumptions:

1. If nI denotes the number of the ANN input neurons, then the ANN
computes a mapping net of nI-dimensional input values into the set X on
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which is the GP defined. Consequently, the number nO of neurons in the last
hidden layer fulfills X ⊂ RnO , and the ANN maps an input v into a point
x = net(v) ∈ X , corresponding to an observation f(x) + ε governed by the
GP (Figure 1). From the point of view of the ANN inputs, the GP is now
GP(mGP(net(v)), κ(net(v),net(v′))).

2. The GP mean mGP is assumed

III

(+ distribution of y)

last hidden layer: x

output GP layer: y

.

.

.

input layer: input values v

1st hidden layer

Fig. 1. Schema of the integration of a GP
into an ANN as its output layer.

to be a known constant, thus not con-
tributing to the GP hyperparameters
and independent of net.

Due to the assumption 2., the GP
depends only on the parameters θκ

of the covariance function. As to the
ANN, it depends on the one hand on
the vector θW of its weights and bi-
ases, on the other hand on the net-
work architecture, which we will treat
as fixed before network training.

Consider now n inputs to the neu-
ral network, v1, . . . ,vn, mapped to the
inputs x1 = net(v1), . . . , xn= net(vn)
of the GP, corresponding to the ob-
servations y = (y1, . . . , yn)>. Then
the log-likelihood of θ = (θκ, θW ) is

L(θ) = ln p(y;mGP, κ, σ
2
n) =

= −1

2
(y −mGP)>K−1(y −mGP)

− ln(2π)− 1

2
ln det(K + σ2

nIn), (6)

where mGP is the constant assumed
in 2., and

(K)i,j = κ(net(vi),net(vj)). (7)

Let model training, searching for the vector (θκ, θW ), be performed in the
most simple but, in the context of neural networks, also the most frequent way –
as gradient descent. The partial derivatives forming ∇(θκ,θW )L can be computed
as:

∂L
∂θκ`

=

n∑

i,j=1

∂L
∂Ki,j

∂Ki,j

∂θκ`
, (8)

∂L
∂θW`

=

n∑

i,j,k=1

∂L
∂Ki,j

∂Ki,j

∂xk

∂ net(vk)

∂θW`
. (9)
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In (8), the partial derivatives ∂L
∂Ki,j

, i, j = 1, . . . , n, are components of the ma-

trix derivative ∂L
∂K , for which the calculations of matrix differential calculus [36]

together with (4) and (6) yield

∂L
∂K

=
1

2

(
K−1yy>K−1 −K−1

)
. (10)

3 Surrogate Modelling in the CMA-ES Context

3.1 Surrogate Models for Continuous Black-Box Optimization

Basically, the purpose of surrogate modelling – to approximate an unknown func-
tional dependence – coincides with the purpose of response surface modelling in
the design of experiments [26, 38]. Therefore, it is not surprising that typical
response surface models, i.e., low order polynomials, belong also to the most tra-
ditional and most successful surrogate models [1, 2, 21, 30, 43]. Other frequently
used kinds of surrogate models are artificial neural networks of the kind multi-
layer perceptron (MLP) or radial basis function network [19, 27–29, 40, 50], and
the models to which the previous section was devoted – GPs, in surrogate mod-
elling also known as kriging [5,6,12–14,31,32,35,47,48]. Occasinally encountered
are support vector regression [9, 34] and random forests [4, 41].

From the point of view of active learning, the most attractive kind of surro-
gate models are GPs, due to the fact that a GP estimate f(x) of the value of
a true objective function for an input x is not a point, but a random variable.
Its Gaussian distribution allows to define alternative criteria according to which
individuals for evaluation by the true objective function can be selected, most
importantly:

– Probability of improvement of the estimate f(x) with respect to a reference
value V (typically the minimal so far found value of the true objective func-
tion),

PoI(f(x);V ) = P (f(x) ≤ V ), (11)

which can be estimated using the Gaussian distribution of the GP.
– Expected improvement with respect to V ,

EI(f(x), V ) = E(V − f(x))I(f(x) < V )., (12)

3.2 Covariance Matrix Adaptation Evolution Strategy and Its
Surrogate-Assisted Variant DTS-CMA-ES

The CMA-ES algorithm performs unconstrained optimization on Rd, by means
of iterative sampling of populations sized λ from a d-dimensional Gaussian dis-
tribution N (m,σ2C), and uses a given parent number µ among the sampled
points corresponding to the lowest objective function values, to update the pa-
rameters of that distribution. Hence, it updates the expected value m, which is
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used as the current point estimate of the function optimum, the matrix C and
the step-size σ. The CMA-ES is invariant with respect to monotonous transfor-
mations of the objective function. Hence, to make use of the evaluations of the
objective function in a set of points, it needs to know only the ordering of those
evaluations. Details of the algorithm can be found in [20,23].

During the more than 20 years of CMA-ES existence, a number of surrogate-
assisted variants of this algorithm have been proposed, a survey can be found in
[5,42]. Here, we will pay attention only to the most recent GP-based among them,
the Doubly Trained Surrogate CMA-ES (DTS-CMA-ES) [5], a surrogate-assisted
variant of CMA-ES. It employs two GPs f1 and f2, trained consecutively, to find
an evaluation of the population x1, . . . , xλ, with f1 used for active learning of
training data for f2. Due to the CMA-ES invariance with respect to monotonous
transformations, evaluates the difference between predictions only according to
the difference in the ordering of those predictions, more precisely, according to
the ranking difference error (RDE). The RDE of y ∈ Rλ with respect to y′ ∈ Rλ
considering k best components is defined:

RDE
≤k

(y, y′) =

∑
i,(ρ(y′))i≤k |(ρ(y′))i − (ρ(y))i|

maxπ∈Π(λ)

∑k
i=1 |i− π−1(i)|

, (13)

where Π(λ) denotes the set of permutaions of {1, . . . , λ} and ρ(y) denotes the
ordering of the components of y, i.e., (∀y ∈ Rλ) ρ(y) ∈ Π(λ) & (ρ(y))i <
(ρ(y))j ⇒ yi ≤ yj .

The algorithm DTS-CMA-ES is described in Algorithm 1, using the following
notation:

– A for an archive – a set of points that have already been evaluated by the
true black-box objective function BB;

– dσ2C for the Mahalanobis distance given by σ2C:

dσ2C(x, x′) =
√

(x− x′)>σ−2C−1(x− x′); (14)

– Nk(x;A) for the set of a given number k of dσ2C-nearest neighbours of x ∈ Rd
with respect to the archive A;

– fi(x1, . . . , xλ) = (fi(x1), . . . , fi(xλ)), for i = 1, 2;

– Th =
⋃λ
j=1{x ∈ Nh(xj ;A)|dσ2C(x, xj) < rmax} with rmax > 0 for h =

1, . . . , |A|;
– k(A) = max{h||Th| ≤ Nmax}, with Nmax ∈ N;
– ρPoI for decreasing ordering of f1(x1), . . . , f1(xλ) according to the probability

of improvement with respect to the lowest BB value found so far,

i < j ⇒ PoI(ρPoI(f1(x1, . . . , xλ)))i;V ) ≥ PoI(ρPoI(f1(x1, . . . , xλ)))j ;V ),
(15)

where V = minx∈ABB(x).
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Algorithm 1 Algorithm DTS-CMA-ES

Require: x1, . . . , xλ ∈ Rd, µ, A, σ and C – step size and matrix from the CMA-ES
distribution, Nmax ∈ N such that Nmax ≥ λ, rmax > 0, β, εmin, εmax, αmin, αmax ∈
(0, 1)

1: if this is the 1st call of the algorithm in the current CMA-ES run then
2: set α = ε = 0.05
3: else
4: take over the returned values of α, ε from its previous call in the run
5: end if
6: Train a Gaussian process f1 on Tk(A), estimating mGP, σn, σf , ` through maximiza-

tion of the likelihood (4)
7: Evaluate BB(xj) for xj such that (ρPoI(f1(x1, . . . , xλ)))j ≤ dαλe and not yet BB-

evaluated
8: Update A to A ∪ {(xj |(ρPoI(f1(x1), . . . , f1(xλ)))j ≤ dαλe}
9: Train a Gaussian process f2 on Tk(A), estimating mGP, σn, σf , ` through maxi-

mization of the likelihood (4)
10: For xj such that (ρPoI(f1(x1, . . . , xλ)))j ≤ dαλe, update f2(xj) = BB(xj)
11: Update ε to (1 − β)ε + βRDEµ(f1(x1, . . . , xλ), (f2(x1, . . . , xλ)) and α to αmin +

max(0,min(1, ε−εmin
εmax−εmin

))

12: Update the value f2(xj) to f2(xj)−min{f2(xj′)|(ρPoI(f1(x1, . . . , xλ))j′ > dαλe}+
min{f2(xj′)|(ρPoI(f1(x1, . . . , xλ))j′ ≤ dαλe} for j fulfilling (ρPoI(f1(x1, . . . , xλ))j >
dαλe

13: Return f2(x1), . . . , f2(xλ), ε, α

4 Experiments with ANN+GP Integration in the
DTS-CMA-ES

4.1 Experimental Setup

For the experiments, we have used the 24 noiseless benchmark functions avail-
able on a platform Comparing Continuous Optimizers (COCO) [10, 22]. Those
benchmarks form five groups with different properties:

1. separable functions: f1 sphere, f2 separable ellipsoid, f3 separable Rastrigin,
f4 Büche-Rastrigin, f5 linear slope;

2. moderately ill-conditioned functions: f6 attractive sector, f7 step ellipsoid,
f8 Rosenbrock, f9 rotated Rosenbrock;

3. highly ill-conditioned functions: f10 ellipsoid with high conditioning, f11 dis-
cus, f12 bent cigar, f13 sharp ridge, f14 different powers;

4. multi-modal functions with global structure: f15 non-separable Rastrigin, f16
Weierstrass, f17 Schaffers F7, f18 ill-conditioned Schaffers F7, f19 composite
Griewank-Rosenbrock;

5. multi-modal weakly structured functions: f20 Schwefel, f21 Gallagher’s Gaus-
sian 101-me points, f22 Gallagher’s Gaussian 21-hi points, f23 Katsuura, f24
Lunacek bi-Rastrigin.

All benchmark functions were optimized on the closed cube [−5, 5]d, where d
is the dimension of the input space, and the initial CMA-ES population was
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sampled uniformly on [−4, 4]d. For each noiseless function, 25 different variants
were used, obtained as follows:

– each of the functions is scalable for any dimension d ≥ 2, we have used the
five dimensions 2, 3, 5, 10, 20;

– for each function in each dimension, 5 different instances were used, mutually
differing through translations and/or rotations.

Each variant f of each benchmark function was optimized for 250d evalua-
tions unless it was terminated earlier due to indicated convergence. To evaluate
the success of optimization at its end, we used the approach used in [22], to cal-
culate the proportion of achieved optimization target in the interval [10−8, 102].
However, instead of calculating such a score from a given number of discrete
targets log-uniformly distributed in that interval as in [22], we calculated its
continuous counterpart as the ratio of the logarithmic length λlog between the
subinterval of [10−8, 102] corresponding to the achieved distance f∗ to the min-
imum of f at the end of the optimization and the whole interval [10−8, 102],

r =
λlog([10−8, 102] ∩ [f∗,+∞))

λlog([10−8, 102])
=

max(0,min(10, 2− log10 f
∗))

10
. (16)

For all experiments, we used the existing implementation of DTS-CMA-ES
at https://github.com/bajeluk/surrogate-cmaes, into which we implemented the
ANN+GP surrogate models using the system GPyTorch [17], our implementaion
is available at https://github.com/c0zzy/surrogate-networks. As to the tunable
parameters of DTS-CMA-ES, we used the same values as [5]. As to the tunable
parameters of GPyTorch, we fixed the five listed in Table 1 and utilized the
default values of the remaining.

Finally, for the neural networks in the ANN+GP combinations, we used
fully connected multilayer perceptrons with one hidden layer of a sufficiently
low number of neurons to assure their trainability with comparatively small
archives typically available in the DTS-CMA-ES. More precisely, all the ANNs
used the fully connected topologies (d− nO − nO) with

nO =





2 if d = 2,

3 if d = 3, 5,

5 if d = 10, 20.

(17)

4.2 First Results and Their Discussion

The first work-in-progress results presented in this paper, compare ANN+GP
combinations with different covariance functions of the GP. Table 2 reports the
scores of each such combination for each noiseless benchmark function, averaged
over the 25 combinations of 5 instances and 5 dimensions. In Tables 3 and 4, the
scores are reported for the above defined groups of benchmark functions, and
for the considered dimension, respectively. Hence, the score averaging in Table 3
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Table 1. Settings for important GPyTorch parameters. For all its remaining tunable
parameters, the default values were used

Optimizer Adam

Learning rate 0.0005

Iterations 1000

Noise 0.0001

Length scale bounds 0.01, 100

includes in addition all functions of the respective group, whereas in Table 4 the
scores are averaged over the 120 instances of the 24 benchmark functions. In
all three tables, the ANN+GP combination with the highest average score is in
bold.

Table 2. Score of the 5 compared ANN+GP combinations for each of the noiseless
COCO benchmark functions, averaged over the 25 combinations of the 5 instances
of that function and the 5 considered dimensions. For each function, the ANN+GP
combination with the highest average score is in bold

κLIN κQUAD κSE κMA5 κRQ κSE+Q κLIN κQUAD κSE κMA5 κRQ κSE+Q

f1 0.38 0.45 0.54 0.54 0.56 0.47 f13 0.13 0.15 0.22 0.25 0.27 0.23
f2 0.02 0.11 0.22 0.20 0.26 0.19 f14 0.41 0.45 0.55 0.54 0.54 0.47
f3 0.09 0.09 0.10 0.10 0.11 0.09 f15 0.09 0.09 0.09 0.10 0.10 0.09
f4 0.07 0.07 0.08 0.08 0.08 0.09 f16 0.14 0.14 0.20 0.12 0.15 0.12
f5 1.00 1.00 1.00 1.00 1.00 1.00 f17 0.26 0.30 0.33 0.34 0.33 0.32
f6 0.09 0.10 0.13 0.17 0.15 0.16 f18 0.21 0.25 0.27 0.25 0.28 0.27
f7 0.28 0.38 0.51 0.43 0.54 0.45 f19 0.19 0.20 0.20 0.20 0.20 0.21
f8 0.15 0.17 0.29 0.29 0.28 0.27 f20 0.17 0.17 0.18 0.17 0.17 0.18
f9 0.15 0.15 0.18 0.24 0.30 0.26 f21 0.19 0.18 0.16 0.18 0.16 0.17
f10 0.02 0.07 0.10 0.07 0.10 0.07 f22 0.15 0.11 0.16 0.13 0.16 0.14
f11 0.05 0.09 0.12 0.10 0.13 0.12 f23 0.17 0.16 0.17 0.17 0.17 0.16
f12 0.03 0.07 0.08 0.10 0.13 0.09 f24 0.07 0.07 0.07 0.07 0.07 0.07

From Tables 2–4, we can see that the highest average score has been by far
the most frequently achieved by ANN+GP combinations with rational quadratic
covariance functions κRQ: for 14 out of the 24 functions, 3 out of the 5 groups
of functions, and 4 out of the 5 considered dimensions. The rational quadratic
covariance function shares the first place with the squared exponential covari-
ance κSE for the function f22 Gallagher’s Gaussian 21-hi points, as well as for
the dimension 10. In addition, for the function f5 linear slope, ANN+GP com-
binations achieve with all considered covariance function the highest possible
average score 1. Apart from these shared first places, other covariance functions
lead to ANN+GP combinations with the highest average score in the following
cases:
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Table 3. Score of the 5 compared ANN+GP combinations for each group of the
noiseless COCO benchmark functions, averaged over the 100 or 125 (dependent on the
group) combinations of all instances of the functions belonging to that group and the 5
considered dimensions. For each function, the ANN+GP combination with the highest
average score is in bold

κLIN κQUAD κSE κMA5 κRQ κSE+Q

Separable 0.317 0.348 0.390 0.388 0.403 0.370
Moderately ill-conditioned 0.172 0.204 0.281 0.290 0.323 0.288
Highly ill-conditioned 0.134 0.170 0.218 0.218 0.241 0.197
Multi-modal functions globally structured 0.182 0.200 0.221 0.204 0.218 0.206
Multi-modal weakly structured 0.153 0.143 0.151 0.149 0.149 0.147

Table 4. Score of the 5 compared ANN+GP combinations for each considered dimen-
sion, averaged over the 120 considered instances of the 24 noiseless COCO benchmark
functions. For each dimension, the ANN+GP combination with the highest average
score is in bold

κLIN κQUAD κSE κMA5 κRQ κSE+Q

2 0.268 0.322 0.386 0.389 0.398 0.365
3 0.23 0.254 0.326 0.307 0.365 0.302
5 0.178 0.194 0.225 0.223 0.244 0.224
10 0.162 0.166 0.185 0.184 0.185 0.174
20 0.124 0.131 0.133 0.138 0.131 0.135

– the covariance κSE for the function f14 different powers as well as for the
group of multi-modal globally structured functions;

– the Matérn 5
2 covariance κMA5 for the functions f6 attractive sector, f8

Rosenbrock, f17 Schaffers F7, f23 Katsuura, and f24 Lunacek bi-Rastrigin,
as well as for the dimension 20;

– the composite covariance κSE+Q for the functions f4 Büche-Rastrigin, f19
composite Griewank-Rosenbrock, and f20 Schwefel;

– the linear covariance κLIN for the function f21 Gallagher’s Gaussian 101-me
points, as well as for the group of multi-modal weakly structured functions,
to which also f21 belongs.

The results in Tables 2–4 reflect both systematic differences due to differ-
ent covariance functions and random differences due to noise. To assess the
influence of different covariance functions without the interference of noise, the
obtained differences were tested for statistical significance. To this end, the null
hypotheses that the means of the random variables that produced the scores
for the individual ANN+GP combinations are all identical were tested, using
the Friedman’s test with post-hoc identification of the pairs that lead to the
rejection of the null hypothesis if it is rejected. Both the Friedman test and its
post-hoc tests were performed on the family-wise significance level for multiple-
hypotheses testing 5%, and the family-wise significances were assessed from the
achieved significances of the individual tests (p-values) by means of the Holm
method [16].
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For individual functions, the Friedman test was always based on the 25 com-
binations of their 5 instances and the 5 considered dimensions. The test rejected
the null hypothesis for all functions except the f5 linear slope. The result of the
post-hoc tests are summarized in Table 5. The value in each row r and column
c 6= r tells for how many among the remaining 23 functions the covariance func-
tion in the row was as part of an ANN+GP combination significantly better than
the one in the column, or equivalently the one column was significantly worse
than the one in the row. This means that the ANN+GP combination with the
covariance function in the row yielded a higher average score than with the one
in the column, and the post-hoc test rejected on the family-wise significance level
5% the hypothesis of equal mean values of the random variables that produced
both scores. For individual function groups, the Friedman tests were based on
the 100 or 125 combinations of the functions belonging to the group, their 5
instances and the 5 considered dimensions. For individual dimensions, they were
based on the 120 combinations of the 24 functions and their dimensions. Both
the 5 tests for the function groups and the 5 tests for the dimensions rejected
their null hypotheses. The results of their post-hoc tests are summarized in Ta-
ble 6. In Tables 5 and 6, the value in the cell is in bold if the covariance function
in the row was more often significantly better than significantly worse than the
one in the column.

Table 5. The number of functions among those 23 for which the null hypothesis of the
Friedman test was rejected, for which the covariance function in the row was as part
of an ANN+GP combination significantly better than the one in the column. That
value is in bold if it is in addition higher than the number of functions for which the
covariance function in the row was significantly worse than the one in the column

Covariance function κLIN κQUAD κSE κMA5 κRQ κSE+Q

κLIN – 0 0 0 0 0
κQUAD 0 – 0 0 0 0
κSE 2 0 – 0 0 14
κMA5 1 0 0 – 9 14
κRQ 6 1 0 14 – 18
κSE+Q 0 0 9 9 5 –

From Tables 5 and 6, we can observe that the covariance function κLIN was
never either significantly better or significantly worse than κQUAD. This can be
interpreted as interchangeability of both functions from the point of view of being
used as covariances in the ANN+GP surrogate models for DTS-CMA-ES. The
same relationship holds also for the pairs of covariance functions (κSE, κMA5) and
(κSE, κRQ). It is particularly important in connection with the last mentioned
pair, in view of the fact that κRQ was the covariance most often yielding the
highest score, and κSE was in this respect the 3rd among the individual bench-
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Table 6. The number of function groups (left), respectively considered dimensions
(right) for which the covariance function in the row was as part of an ANN+GP
combination significantly better than the one in the column. That value is in bold if it
is in addition higher than the number of function groups, respectively dimensions for
which the covariance function in the row was significantly worse than the one in the
column

Covariance for function groups for dimensions
function κLIN κQUAD κSE κMA5 κRQ κSE+Q κLIN κQUAD κSE κMA5 κRQ κSE+Q

κLIN – 0 0 0 0 0 – 0 0 0 0 0
κQUAD 0 – 0 0 0 0 0 – 0 0 0 0
κSE 4 2 – 0 0 4 4 2 – 0 0 4
κMA5 4 2 0 – 0 4 4 2 0 – 1 4
κRQ 4 2 0 5 – 5 4 2 0 4 – 4
κSE+Q 4 1 1 1 0 – 4 1 1 1 1 –

mark functions and the 2nd among groups of functions and among the considered
dimensions. Altogether, these two interchangeable covariance functions yielded
the highest score for 15 from the 24 considered benchmarks, for 4 from the 5
benchmark function groups and for 4 from the 5 considered dimensions.

5 Conclusion ad Future Work

This work-in-progress paper presented an experimental investigation of surro-
gate models combining artificial neural networks with Gaussian processes in the
context of a sophisticated surrogate-assisted variant of the black-box optimizer
CMA-ES, the DTS-CMA-ES, which consecutively trains two surrogate mod-
els, using the first for active learning of training data for the second. In the
experiments, a comprehensive comparison of ANN+GP surrogate models with
six different covariance functions was performed on the 24 noiseless benchmark
functions of the COCO platform [10, 22] in 5 dimensions. The results revealed
that the most suitable covariance function for this combined kind of surrogate
models is the rational quadratic, followed by the Matérn 5

2 , and squared expo-
nential. Moreover, the rational quadratic and squared exponential were found
interchangeable in the sense that for no function, no group of functions, no
dimension, and no function-dimension combination, none of these covariance
functions was significantly better than the other.

As usually with work in progress, still very much is left for the future. Most
importantly, the ANN+GP surrogate models need to be compared with pure
GP surrogates. Superficially, that should be no problem because the original
implementation of DTS-CMA-ES uses GPs alone. However, the DTS-CMA-ES
implementation relying on the system GPML [44], and our implementation of
the ANN+GP surrogates relying on the system GPyTorch [17] do not allow a
comparison in which the difference between pure GP and ANN+GP surrogates
would reflect only the added combination of both kinds of models. According
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to our experience, that difference is much more due to the incompatibility be-
tween GPML and GPyTorch. The GPML does not include any ANN extension,
whereas the GPyTorch includes also pure GPs, however, their predictive acuracy
is substantially lower than that of their counterparts with the same covariance
function that are implemented in the GPML. Hence, to arrive to an unbiased
comparison of ANN+GP and pure GP surrogate models will still need a lot of
implementation effort.

Further directions of our future research include on the one hand deep GPs,
mentioned already in the Introducion, on the other hand the reconsideration of
the approach employed in GPyTorch – training the ANN and the GP forming
the combined surrogate model together by means of likelihood maximization.
Whereas maximum likelihood is indeed the commonly used objective function
for GP learning [45], successful and efficient ANN learning algorithms typically
rely on other objectives [18]. Therefore, we would also like to investigate a cyclic
interleaving of a GP-learning phase with an ANN-learning phase, where the
length of the latter will depend on the relationship of its success to the success
of the former.

Finally, we intend to perform research into transfer learning of such combined
surrogate models: an ANN-GP model with a deep neural network will be trained
on data from many optimization runs, and then the model used in a new run of
the same optimizer will be obtained through additional learning restricted only
to the GP and the last 1-2 layers of the ANN.
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Foundation (GAČR) grant 18-18080S. For J. Tumpach, it has been also partially
supported by the Charles University student grant 260575. Computational re-
sources were supplied by the project e-INFRA LM2018140 provided within the
program Projects of Large Research, Development and Innovations Infrastruc-
tures.

References

1. Auger, A., Brockhoff, D., Hansen, N.: Benchmarking the local metamodel cma-es
on the noiseless BBOB’2013 test bed. In: GECCO’13. pp. 1225–1232 (2013)

2. Auger, A., Schoenauer, M., Vanhaecke, N.: LS-CMA-ES: A second-order algorithm
for covariance matrix adaptation. In: Parallel Problem Solving from Nature - PPSN
VIII. pp. 182–191 (2004)
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41. Pitra, Z., Repický, J., Holeňa, M.: Boosted regression forest for the doubly trained
surrogate covariance matrix adaptation evolution strategy. In: ITAT 2018. pp. 72–
79 (2018)
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Abstract. Unsupervised Domain Adaptation (UDA) bridges the gap
between a labelled source domain and an unlabelled target domain. In
this paper, we improve adaptation by guiding the model with actively
annotated target data. This problem, named Active Domain Adapta-
tion (ADA) is of practical interest as it is sometimes possible to anno-
tate a small budget of target data in many applications. We introduce
Stochastic adversarial gradient embedding (Sage), an embedding for es-
timating the impact of annotating a target sample on adaptation. Sage
measures the variation of the transferability loss gradient, before and af-
ter annotation. Additionally, we investigate various procedures for incor-
porating a small subset of labelled target samples when learning domain
invariant representations. Our experiments on challenging benchmarks
demonstrate that a small effort of active annotation with Sage improves
adaptation substantially. Importantly, with a comparable labelling bud-
get, Sage performs better than its semi-supervised counterpart while
having more realistic assumptions.

Keywords: Domain Adaptation · Active Learning · Invariant Repre-
sentations.

1 Introduction

When provided with a large amount of labelled data, deep neural networks have
dramatically improved the state-of-the-art in various applications [19]. How-
ever, when deployed in the real world, where data may slightly differ from the
training data, deep models often fail to generalize out of the training distribu-
tion [5]. Nevertheless, deep nets can learn data representations transferable to
new tasks or new domains if some labelled data from the new distribution are
available [36]. Acquiring a sufficient amount of labelled data is often impossi-
ble, and large scale annotation is often cost-prohibitive. In contrast, unlabelled
data are much more convenient to obtain. This observation has motivated the
field of Unsupervised Domain Adaptation (UDA) [23,26] for bridging the gap
between a labelled source domain and an unlabelled target domain. Learning



2 V. Bouvier et al.

Labelled source Unlabelled target Poorly aligned target

Decision boundary Decision boundary

Active target annotation

Decision boundary update Gradient of samples induced by the annotation 

Before annotation After annotation

1
2

3

1
2

3

1

2

3

High variation of the gradient

Gradient if annotation returns

Gradient if annotation returns

12
3

Fig. 1. Effect of annotation of a target sample selected by Sage (best viewed in colors).
Binary classification problem (• vs ?) where source samples are blue and target samples
are orange. Before annotation, the class-level alignment is not satisfactory leading to
a potential negative transfer (poorly aligned target samples tagged as 1, 2 and 3). We
estimate which sample should be primarily annotated by measuring the variation of
the representations’ transferability gradient, before and after annotation. We observe
the highest variation is obtained for target sample 3, which is sent to an oracle. The
oracle annotation returns class ?, validating the suspicion of negative transfer. This
leads to an update of the decision boundary, which pushes 1, 2, and 3 into class ?,
resulting in a better class-level alignment of representations.

domain Invariant Representations has led to significant progress [13,21,22]. By
fooling a discriminator trained to separate the source from the target domain,
the feature extractor removes domain-specific information from representations.
Thus, a classifier trained from those representations with source labelled data is
expected to perform reasonably well in the target domain [6].

However, those methods perform significantly worse than their fully su-
pervised counterparts. To this purpose, Semi-Supervised Domain Adaptation
(SSDA) has been studied in [31] through a Mini-Max Entropy objective (MME).
Nevertheless, assuming that at least one target labelled sample represents a class,
thus involving information about target labels, SSDA is built on assumptions
that are unlikely to be met in practice. A more realistic scenario would be to
guide adaptation by selecting for annotation a pool target unlabelled instances.
This new paradigm referred to as Active Domain Adaptation (ADA), is often
encountered in real-world applications. To our knowledge, only a few prior works
address ADA [9,27,30,34]. In particular, the recent work of Su et al. [34] is the
first that uses domain adversarial learning for Active Learning (AL).

In this paper, we address ADA reserving the annotation budget for target
samples for which their annotations are likely to guide adaptation. In contrast
to [34], which selects a diverse set of poorly adapted target samples based on
a classical criterion of uncertainty, we estimate the impact of annotation on
the representations’ transferability. To this purpose, we introduce Stochastic
adversarial gradient embedding (Sage), an embedding of target samples, whose
norm estimates precisely this impact. Our approach also promotes diversity in
the annotation. We follow [3] and select target samples for which Sage spans on
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diverse directions using the k-means++ initialization [1]. Since access to some
labelled data from the target domain brings us back to SSDA, we investigate
the role of MME in this context.

We organize the rest of the paper as follows. First, we provide a brief overview
of Domain Adversarial Learning for UDA. Importantly, we expose a soft-class
conditioning adversarial loss, which reflects the transferability error of domain
invariant representations [7]. Second, we present the details of Sage while provid-
ing theoretical insights that AL can improve representations’ transferability in
the third section. Finally, we conduct an empirical study on several benchmarks
that support our ADA approach.

2 Background

Notations. Let us consider three random variables; X the input data, Z the
representations and Y the labels, defined on spaces X , Z ⊂ Rm where m is
the dimension of the representation, and Y such that |Y| = C for some integers
C, respectively. We note realizations with lower cases, x, z and y, respectively.
Those random variables may be sampled from two and different distributions:
the source distribution pS i.e., data where the model is trained and the target
distribution pT i.e., data where the model is evaluated. Labels are one-hot en-
coded i.e., y ∈ [0, 1]C with

∑
c yc = 1 where C is the number of classes. We

use the index notation S and T to differentiate source and target quantities.
We define the hypothesis class H as a subset of functions from X to Y which
are the composition of a representation class Φ (mappings from X to Z) and a
classifier class F (mappings from Z to Y) i.e., h := fϕ := f ◦ϕ ∈ H where f ∈ F
and ϕ ∈ Φ. For D ∈ {S, T} and a hypothesis h ∈ H, we introduce the error in
domain D, εD(h) := ED[`(h(X), Y )] where ` is the L2 loss `(y, y′) = ||y − y′||2
and h(x)c is the probability of x to belong to class c. We note the source domain
data (xSi , y

S
i )1≤i≤nS

and the target domain data (xTj )1≤j≤nT
.

Domain Adversarial Learning. The seminal works from [13,21], and their the-
oretical ground [6], have led to a wide variety of methods based on domain
invariant representations [22,20,10]. A representation ϕ and a classifier f are
learned by achieving a trade-off between source classification error and domain
invariance of representations by fooling a discriminator trained to separate the
source from the target domain:

L(ϕ, f) := LS(ϕ, f)− λ · inf
d∈D

LINV(ϕ, d) (1)

where LS(ϕ, f) := ES [−Y · log(fϕ(X))] is the cross-entropy loss in the source
domain, LINV(ϕ, d) := ES [log(1−d(ϕ(X)))]+ET [log(d(ϕ(X))] is the adversarial
loss and D is the set of discriminators i.e. mapping from Z to [0, 1]. In practice,
infd∈D is approximated using a Gradient Reversal Layer [13].
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Transferability loss for class-level invariance. Promoting class-level domain in-
variance improves the transferability of representations [22]. Recently, the work
[7] introduces the transferability loss, noted LTSF, which adds class-conditioning
in the adversarial loss by computing a scalar product between labels y and a
class-level discriminator d defined as a mapping from Z to [0, 1]C . Since labels
are not available in the target domain at train time, predicted labels ŷ := fϕ(x)
are used. This approach is referred to as soft-class conditioning :

L(ϕ, f) := LS(ϕ, f)− λ · inf
d∈D

LTSF(ϕ, ŷ, d) (2)

where LTSF(ϕ, ŷ, d) := ES [Y · log(1 − d(ϕ(X)))] + ET [Ŷ · log(d(ϕ(X))] is the
transferability loss and D is the set of class-level discriminators i.e., mappings
from Z to [0, 1]C . In this work, we explore the role of active annotation on
a small subset of the target domain in order to improve the transferability of
representations. Methods based on LTSF as adaptation loss are flagged as TSF.

3 Proposed Method

3.1 Motivations

Gradient-based selection, as shown in Badge [3], is promising in AL. In contrast
to Badge, which focuses on the network’s predictions, we discuss the role of
representations’ transferability. To this purpose, we introduce, in the following,
the adversarial gradient that reflects the lack of transferability of a target sample.
From this gradient, we expose a query that efficiently incorporates the domain
shift problem in ADA. Let a target sample x ∼ pT with representation z :=
ϕ(x) ∈ Rm, we start by describing the effect of annotating the sample x on the
gradient descent update of 2. We define the adversarial gradient gx of x as the
gradient of the discriminator loss w.r.t the representation z:

gx := −∂ log(d(z))

∂z
∈ RC×m, where d(z) ∈ [0, 1]C (3)

Following the expression of the transferability loss LTSF, the contribution of a
sample x to the gradient update (2), before and after its annotation, is:

{
θ ← θ − α∂z

∂θ
· (ŷ · gx)

}

︸ ︷︷ ︸
Before annotation

−→
{
θ ← θ − α∂z

∂θ
· (y · gx)

}

︸ ︷︷ ︸
After annotation

y∼Oracle(x)

where ∂z/∂θ is the jacobian of the representations with respect to the deep
network parameters θ i.e., z := ϕθ(x), ŷ := fϕθ(x) is the current label estimation
and α is some scaling parameter. Before the annotation, the gradient vector
can be written as a weighted sum of gx i.e., ŷ · gx ∈ Rm, reflecting the class
probability of x. Annotating the sample x has the effect of setting, once and for
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all, a direction of the gradient (y ·gx). Based on this observation, we can measure
the annotation procedure’s ability to learn more transferable representations by
its tendency to change the path of the gradient descent i.e., how y ·gx may differ
with ŷ · gx.

3.2 Positive Orthogonal Projection (POP)

In the rest of the paper, we consider gx ∈ RC×m as a stochastic vector of Rm with
realizations lying in Gx := {g1

x, ...,g
C
x } where gcx = (−∂ log(d(z))/∂z)c. When

provided the label through an oracle i.e., y ∼ Oracle(x), we obtain gyx ∈ Gx, a
realization of gx. Before annotation, the direction of the gradient is the mean
of gx where Gx is provided with the class probability given by the classifier’s
output h(x). More precisely, the probability of observing g̃x = g̃cx is h(x)c, then,
the mean of gx, noted Eh[gx] is defined as follows:

Eh[gx] := Ey∼h(x) [gyx] = h(x) · gx ∈ Rm (4)

Therefore, the tendency to modify the direction of the gradient is reflected by
a high discrepancy between Eh[gx] and gyx for y ∼ Oracle(x). To quantify this
discrepancy, we consider variations in both direction and magnitude. To find a
good trade-off between these two requirements, we remove the mean direction of
the gradient Eh[gx] to gx by computing a Positive Orthogonal Projection (POP),
noting λ := |gx · Eh[gx]|/||Eh[gx]||2;

g̃x := gx − λEh[gx] (5)

We motivate the use |gx · Eh[gx]| rather than gx · Eh[gx] for the standard or-
thogonal projection. On the one hand, if the annotation provides a gradient with
the same direction as the expected gradient i.e., the annotation reinforces the
prediction, g̃x is null. On the other hand, if the annotation provides a gradient
with an opposite direction to the expected gradient i.e., the annotation contra-
dicts the prediction, the norm of g̃x increases. Therefore, target samples x for
which we expect the highest impact on the transferability, are those with the
highest norm of g̃x. Since λ involves an absolute value, we refer to it as a pos-
itive orthogonal projection. An illustration is provided in Figure 2. Since g̃x is
stochastic, we need additional tools to define a norm operator properly on it.

3.3 Stochastic Adversarial Gradient Embedding

It seems natural to quantify the norm of the stochastic vector g̃x as the square
root of the mean of g̃x’s norm: ||g̃x||h := (Ey∼h(x)

[
||g̃yx||2

]
)1/2. However, given x1

and x2, how to quantify the discrepancy between gx1
and gx2

? The difficulty re-
sults from the fact that h(x1) 6= h(x2) in general. Simply using Ey1∼h(x1),y2∼h(x2)[
||gy1x1

− gy2x2
||2
]
)1/2 leads to an operator that returns a non-null discrepancy be-

tween x and itself if h(x) is not a one-hot vector. To address this issue, we
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Fig. 2. (a) Visualisation of S(x) = (
√
p1g̃

1
x,
√
p2g̃

2
x). Here g̃2

x ⊥ (ŷ ·gx) since ŷ ·gx and
g2
x have a similar direction while |g̃1

x · gx| ≥ |g1
x · gx| since g1

x as a component in the
opposite direction of ŷ · gx. (b) Illustration of a case where the transferability loss is
close to a local minimum (ŷ ·gx ≈ 0), but the stochastic gradients (gy

x for y ∈ {1, 2, 3})
have a high norm. Here, the annotation chooses one of the gradients resulting in a
strong update of the model.

suggest to embed x, through a mapping S named Stochastic adversarial gradient
embedding (Sage):

S(x) := (
√
h(x)1g̃

1
x, ...,

√
h(x)C g̃Cx ) ∈ RC×m (6)

By choosing
√
h, we guarantee that ||S(x)|| = ||g̃x||h while offering a proper

discrepancy between gx1
and gx2

with ||S(x1)−S(x2)||. Crucially, both the norm
and the distance computed on Sage do not involve the target labels, making it
relevant for UDA since target labels are unknown. An illustration of Sage is
provided in Figure 2.

3.4 Increasing Diversity of Sage (k-means++)

As aforementioned, the higher the norm of ||S(x)||, the greater the expected
impact of annotating sample x on the transferability of representations. A naive
strategy of annotation would be to rank target samples by their Sage norm
(||S(x)||). The drawback is to acquire labels for a not IID batch from the target
distribution, a problem referred to as the challenge of diversity in AL [33]. In
certain pathological cases (e.g. the selection of very similar samples or samples
of the same class), the IID violation may degrade the performance in the target
domain. To label useful target samples (i.e., high ||S(x)||) while acquiring a
representative batch of the target distribution, we follow [3] by selecting samples
with high ||S(x)|| which span in various directions. This is performed using the
k-means++ initialization [1]. The procedure Sage is detailed in Algorithm 1 for a
given budget b of annotation. Importantly, sampling diverse target samples with
high impact on transferability results from the construction of an embedding
(Sage) suitable with k-means++.
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Algorithm 1 Sage(UT , b, f, ϕ, d): Sage with diversity (k-means++)

Input: UT : Unlabelled target data, budget b, representation ϕ, classifier f , discrimi-
nator d

1: Computes S(xu) for xu ∈ UT . Depends on both f and ϕ.
2: A ← {argmaxxu∈UT

||S(xu)||} . Select sample with the highest Sage norm.
3: while |A| < b do . Apply k-means++ on Sage embedding.
4: A ← A ∪ {argmax

xu∈UT

min
xa∈A

||S(xu)− S(xa)||}
5: end while
6: Return A

3.5 Semi-Supervised Domain Adaptation (SSDA)

When acquiring labels in the target domain, we are in the Semi-Supervised
Domain Adaptation (SSDA) setting. To this purpose, we note LS and LT the
sets of labelled samples from the source and the target domains, respectively. We
study three strategies, referred to as S∪T , S+T and MME [31]. They incorporate
labelled samples into adaptation through an additional loss Ω, called a SSDA
regularizer:

ΩS∪T (f, ϕ) := LLS∪LT
(f, ϕ) (7)

ΩS+T (f, ϕ) := LLS
(f, ϕ) + LLT

(f, ϕ) (8)

noting LL(f, ϕ) the empirical cross-entropy of fϕ computed on some labelled
dataset L. Note that ΩS+T gives more importance to target labelled samples
compared to ΩS∪T , especially in the small budget regime (i.e., when the budget
b is such that b � |LS |). As a strong baseline exists in SSDA, we design Ω fol-
lowing the minimax entropy (MME) [31]. Noting HUT (h) := − 1

|UT |
∑
x∈UT h(x) ·

log h(x), the entropy of unlabelled samples UT , the MME objective is:
{
ΩMME(f) := ΩS+T (f, ϕ)− λHUT (fϕ)
ΩMME(ϕ) := ΩS+T (f, ϕ) + λHUT (fϕ)

(9)

where f := σ
(
1
TW ◦ `2

)
(`2(f) := f/||f ||2 is the L2 normalization of features

and W ∈ RC×m is a linear layer), λ = 0.1, T = 0.05 and σ is the softmax layer.

3.6 Training procedure

The training procedure is described in Algorithm 2. First, we train the model by
UDA following the training procedure from [7]. Second, for a given number of
iterations, we select by Sage (See Algorithm 1) b samples to send to the Oracle.
Then, we perform UDA provided with the knowledge of newly labelled samples,
that is using a SSDA regularizer Ω combined with soft-class conditioning loss
LTSF. We describe the gradient descent step in the following. First, given a loss
L, Given a SSDA regularizer Ω (See Section 3.5), the gradient descent step is
defined as follows, for some α > 0:

(f, ϕ, d)← (f, ϕ, d)− α∇(f,ϕ,d)

(
Ω̂(f, ϕ) + λL̂TSF(f, ϕ)

)
(10)
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Algorithm 2 Training procedure

Input: Labelled source samples LS , Unlabelled target samples UT , budget b, annota-
tion rounds r, iterations nit, SSDA regularizer Ω:

1: LT ← {},U ′
T ← UT . Initializes the labelled target samples.

2: f, ϕ, d← UDA as described in [7] . Pretraining before Active Learning.
3: for b rounds of annotations do
4: A ← Sage(U ′

T , b, f, ϕ, d) . Selects samples for annotation.
5: L ← Oracle(A) . Sends samples to an Oracle.
6: LT ← LT ∪ L . Adds newly labelled samples.
7: U ′

T ← U ′
T \A . Removes newly labelled samples.

8: for nit iterations do
9: Sample a source labelled batch B`

S from LS

10: Sample a source labelled batch B`
T from LT

11: Sample a source labelled batch Bu
T from UT . (Not from U ′

T ).
12: f, ϕ, d← Gradient descent update from Equation 10.
13: end for
14: end for
15: Return: f, ϕ

where for a given loss L, we note its batch-wise computation L̂ when provided
with batches of source labelled samples B`S from LS , a source labelled samples B`T
from LT , a source labelled samples BuT from UT . Notably, B`S and B`T are involved

for computing Ω̂ (eventually BuT for Ω̂MME) while B`S and BuT are involved for

computing L̂TSF.

4 Theoretical Analysis

4.1 General bound

We provide a theoretical analysis of guiding adaptation with AL. It leverages
recent results from [7]. Our insight is that some labelled data from the target
domain, when combined with source labelled data, are likely to improve the
target error. For instance, minimizing ΩS+T may result in a better perform-
ing classifier than simply minimizing the source cross-entropy loss LLS

. The
theoretical framework from Bouvier et al. [7] allows to quantify precisely how
it impacts representations’ transferability. Noting hS := argminh∈HεS(h) and
hΩ := argminh∈HΩ(h) such that εT (hΩ) ≤ βεT (hS) for some β < 1 i.e., hΩ
improves the target error compared to hS , the work [7] bounds the target error;

εT (hΩ) ≤ ρ(εS(hS) + 8τ + η) where ρ :=
β

1− β (11)

where τ := supf∈F{ET [hΩ(X) · f(ϕ(X))]−ES [Y · f(ϕ(X))]} is the transferability
error, F is the set of continuous functions from Z to [−1, 1]C , η := inf f∈F εT (fϕ).
Thus, to guarantee a small target error, the following conditions have to be
met: a small source error of hS (small εS(hS)), a small transferability error of
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hΩ (small τ) and a strong inductive bias (small β) while we assume η small [7].
ADA incorporates a small set of target labelled samples into Ω to strengthen the
inductive bias while enforcing a small transferability error of hΩ . More details
on the choice of Ω are given in Section 3.5.

4.2 A particular case with closed form

Setup and additional notations. In this section, we provide a simple example
where the bound presented in Section 4 has a closed form. To conduct the anal-
ysis, we consider X as a measurable set provided with a probability measure
noted pT . We present an extension of an annotation selection to a measurable
set. Selecting samples for annotation with budget b consists in determining some
measurable subset B such that pT (X ∈ B) = b. In the particular case where
pT :=

∑
x∈DT

δx (δx is the Dirac distribution in x) is an empirical distribution,
determining some measurable subset B such that pT (X ∈ B) = b consists in
determining a subset of b samples of DT .

Naive Active Classifier. Given a classifier h and an annotated subset B (with
probability b), we suggest a slight modification of the classifier h based on the
annotation provided by the Oracle of B. To this purpose, we introduce the naive
active classifier, noted hB(x), and defined as follows:

hB(x) = Oracle(x) if x ∈ B, h(x) otherwise. (12)

Thus, hB(x) returns the classifier’s output h(x) if x is not annotated and returns
the oracle’s output Oracle(x) if x is annotated.

A closed bound. We want to exhibit a closed form of ρ when considering the
active classifier. To this purpose, we introduce the purity π of B, π := pT (hS(X)
6= Oracle(X)|X ∈ B). It reflects our capacity to identify misclassified target
samples. With this notion, we observe that the naive classifier improves the
target error; εT (hB) ≤ εT (hS) − bπ. Put simply, the error is reduced by bπ
corresponding to annotated samples for which the prediction is different from
the Oracle output. The higher the budget of annotation b and the higher the
purity π, the lower the target error of the naive classifier. It corresponds to

εT (hS)−bπ =
(

1− bπ
εS(hS)

)
εS(hS) ≤ (1−bπ)εS(hS); resulting into β = (1−bπ),

and finally:

εT (hB) ≤
(

1

bπ
− 1

)
(εS(hS) + 8τ + η) (13)

The target error of the active classifier is a decreasing function of both the purity
and the annotation budget and an increasing function of the transferability error.
The budget b, the purity π and the transferability of representations τ are levers
to improve the naive classifier target error. The budget b must be considered as
a cost constraint and not as a parameter to be optimized. The purity of π is not
tractable since it involves labels in the target domain. Some proxy measures,

Stochastic Adversarial Gradient Embedding for Active Domain Adaptation 129



10 V. Bouvier et al.

(a) A→W (b) W→A (c) A→D

(d) D→A (e) VisDA(b = 16) (f) VisDA(b = 128)

Fig. 3. Annotation of target samples improves adaptation drastically for the considered
tasks. TSF+Sage (in blue) improves upon the state-of-the-art of ADA (AADA, in
green), except for task A→D. AL (Badge, in red) performs poorly in this context (Badge
without adaptation does not appear on VisDA tasks since it performs poorly: 47.0%
and 63.4% after 10 rounds of annotation for b = 16 and b = 128, respectively) showing
the importance of addressing the problem of adaptation for AL under distribution
shift. Naively combining Badge with TSF (TSF+Badge, in orange) performs worsen
than Sage. Sage takes into account the problem of domain shift when querying samples.

such as the entropy of predictions [14], can provide a fair estimation of purity.
However, it is known that deep nets tend to be overconfident on misclassified
samples [12]. Therefore, we focus our efforts on understanding the role of active
annotation in improving transferability error τ .

5 Experiments

5.1 Setup

Tasks. We evaluate our approach on Office-31 [29], VisDA-2017 [25] and
DomainNet [24]. Office-31 contains 4,652 images classified in 31 categories
across three domains: Amazon (A), Webcam (W), and DSLR (D). We explore
tasks A → W, W → A, A → D and D → A. We do not report results
for tasks D → W and W → D since these tasks have already nearly perfect
results in UDA [22]. For VisDA, we explore Synthetic: 3D models with different
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lighting conditions and different angles; Real: real-world images. We explore
the Synthetic → Real task. DomainNet [24] is a large scale dataset with six
domains and 345 classes (Clipart (C), Infograph (I), Painting (P), Quickdraw
(Q), Real (R) and Sketch (S)). As DomainNet suffers of noisy labels, thus
violates the assumption of a perfect Oracle, we focus on the subset of 126 classes
and the 7 tasks R→C, R→P, P→C, C→S, S→P, R→S and P→R [31].

Protocol. The standard protocol in UDA uses the same target samples during
train and test phases. In AL’s context, this induces an undesirable effect where
sample annotation mechanically increases the accuracy. At train time, the model
has access to input and label of annotated samples which are also present at test
time. We suggest instead to split the target domain into a train target domain
(samples used for adaptation and pool of data used for annotation) and test target
domain (samples used for evaluating the model) with a ratio of 1/2. Therefore,
samples from the test target domain have never been seen at train time. As a
result, our protocol evaluates the model generalization in an inductive scenario.
Reported results are based on 8 seeds for each method.

Budget, rounds and backbone. As the selected datasets are of different volumetry
and difficulty, we used different budgets b: b = 8 for A→W and A→D (referred
to as easy tasks), b = 16 for W→A and D→A (referred to as medium tasks),
both b = 16 and b = 128 for VisDA (referred to as hard tasks). This allows to
appreciate versatility of methods in small (b = 8), medium (b = 16) and high
(b = 128) budget regimes. We conduct 10 rounds of annotation for these tasks.
Additional details for DomainNet experiments are provided in comparison with
SSDA in Section 5.2. Our backbone is a ResNet50 [16] trained by 10k steps of
SGD by UDA before annotation. We use DANN [13] for AADA, MME [31] for
MME based methods and TSF [7] for TSF based methods.

Baselines. AADA [34] is the closest algorithm to Sage. AADA adapts repre-
sentations by fooling a domain discriminator d trained to output 1 for source
data and 0 for target data [13] and scores target samples x; s(x) := H(ŷ)w(z)
where H(ŷ) is the entropy of predictions ŷ and w(z) = (1 − d(z))/d(z). H(ŷ)
brings information about uncertainty while w(z) brings diversity to the score. We
have reproduced the implementation of AADA. To demonstrate the effectiveness
of Sage for Active DA, we report TSF with Badge query [3] (TSF+Badge),
which is the state-of-the-art query in AL. For these methods, we used Ω = ΩS+T .
To compare Sage with an AL method which ignores domain shift between la-
belled samples and queried samples, we report Badge with ΩS∪T . Finally, to
compare with SSDA approaches, we build two methods upon MME [31] with
Entropy query (selection samples with highest prediction entropy [35]), noted
MME+Entropy, which is the most natural query for MME since it relies on
max/min entropy, and with Random query noted MME+Random. We have
reproduced the implementation of MME.

Stochastic Adversarial Gradient Embedding for Active Domain Adaptation 131



12 V. Bouvier et al.

5.2 Results

Comparison with SOTA. Results are reported in Figure 3. First, active anno-
tation brings substantial improvements to UDA (round 0 of annotation). This
validates the effort and the focus that should be put on ADA, in our opinion.
Sage outperforms the current state-of-the-art (AADA) with a comfortable mar-
gin for tasks with medium or hard difficulty, except for tasks A→D after the 5-th
round. Importantly, Sage performs similarly or better than naively combining
TSF with a state-of-the-art query in AL (Badge) demonstrating that Sage takes
into account the problem of domain shift in the query process. Finally, using a
direct AL method (Badge) fails in the context of domain shift.

Ablation of Sage. We ablate the core components of Sage i.e., POP and the
k-means++ in Figures 4(a) and 4(b). Interestingly, Sage without POP fails to
improve performances in the target domain. This demonstrates that POP brings
information about uncertainty into the embedding. Sage without diversity per-
forms poorly on VisDA(b = 128), demonstrating that k-means++ based sampling
brings diversity. Diversity on Sage has a small effect on W→A.

Ablation of queries. We ablate in Figures 4(c) and 4(d) more AL strategies :
(Random), where target samples are selected at random, Clusters that se-
lects the closest samples to b clusters of representations obtained with k-means,
Entropy based on the highest entropy maxx∈UT −h(x) · log h(x) [35] and Con-
fidence that used the smallest confidence minx∈UT maxc h(x)c [35]. Sage is com-
pared with a wide spectrum of AL queries based on representative (Random),
diversity (Clusters) and uncertainty sampling (Entropy, Confidence). Sage out-
performs them substantially on the two tasks, demonstrating it is well-suited for
ADA.

Ablation of Ω. We report TSF+ΩS∪T and TSF+ΩMME which consists in
adding MME as a regularization of TSF i.e., Ω used here is ΩS∪T and ΩMME,
respectively. Results are reported in Figures 4(e) and 4(f). We observe that us-
ing ΩS+T and ΩMME improve consistently wrt ΩS∪T on VisDA(b = 128) while
performing similarly on W→A. Furthermore, we observe that adding MME to
TSF+Sage achieves the best performances on VisDA(b = 128). Importantly,
MME+Entropy is already strong for VisDA(b = 128) explaining the substantial
improvement when adding MME to TSF for this task.

ADA vs SSDA: ADA is a more realistic setting. We compare SSDA (a fixed
number of labelled target samples per class are available) with ADA (an Oracle
provides ground-truth for queried target samples) when the number of target
labelled samples are equal. Crucially, enforcing a fix number of labelled samples
per class is unrealistic in practice. We report performances on DomainNet of
MME (1 and 3 shot) [31] and Sage (here we used TSF + Sage + ΩMME). AL is
performed during 6 rounds with b = 21 and b = 63 for 1 and 3 shot respectively,
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(a) W→A (b) VisDA(b = 128) (c) W→A

(d) VisDA(b = 128) (e) W→A (f) VisDA(b = 128)

Fig. 4. (a) and (b): Both the POP and k-means++ are crucial components for the em-
pirical success of Sage. (c) and (d): Sage outperforms AL query based on representative,
diversity and uncertainty samplings. (e) and (f): Effect of adding MME to TSF+Sage.

leading to the same number of target labelled samples5. Results are presented
in Table 1. In the 3-shot scenario Sage improves upon MME on all the tasks,
except P→R. In the 1-shot scenario, Sage and MME perform similarly. This
demonstrates that active annotation with Sage performs equally, or better, than
MME, and benefits from more realistic assumptions.

6 Related works

Transferability of Invariant Representations. Recent works warn that domain
invariance may deteriorate transferability of invariant representations [18,38].
Prior works enhance their transferability with multi-linear conditioning of rep-
resentations with predictions [22], by introducing weights [8,37,11], by penalizing
high singular value of representations batch [10] or by hallucinating consistent
target samples for bridging the domain gap [20].

Active Learning. There is an extensive literature on Active Learning [33] that can
be divided into two schools; uncertainty and diversity. The first aims to annotate
samples for which the model has uncertain prediction e.g., samples are selected

5 |LT | = 21× 6 = 126 (1 shot) and |LT | = 63× 6 = 3× 126 (3 shot)
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Tasks
1-shot 3-shot

MME AADA Sage MME AADA Sage

R→C 67.5 64.4 69.3 70.1 68.8 73.9
R→P 69.6 65.5 69.4 70.8 67.0 71.4
P→C 69.0 63.2 69.9 71.4 67.3 74.1
C→S 62.2 57.4 61.5 64.7 60.1 65.4
S→P 67.9 62.6 67.9 69.6 64.9 69.8
R→S 61.2 57.0 62.1 63.6 59.9 65.8
P→R 79.3 74.9 79.0 80.9 76.9 81.2

Mean 68.1 63.6 68.5 70.2 66.3 71.7

Table 1. SSDA (MME) vs ADA (AADA and Sage) on DomainNet. MME’s results
deviate from [31] due to train/test split, ResNet50 as backbone and minor implemen-
tation changes.

according to their entropy [35] or prediction margin [28], with some theoretical
guarantees [15,4]. The second focuses on annotating a representative sample
of the data distribution e.g., the Core-Set approach [32] selects samples that
geometrically cover the distribution. Several approaches also propose a trade-
off between uncertainty and diversity, e.g., [17] that is formulated as a bandit
problem. Recently, the work [2] introduces Badge, a gradient embedding, which,
like SAGE, takes the best of uncertainty and diversity. Our work is inspired by
Badge and adapts the core ideas in the context of ADA.

Active Domain Adaptation. Despite its great practical interest, only a few pre-
vious works address the problem of Active Domain Adaptation. [9] annotates
target samples by importance sampling while [27,30] annotates samples with
high discrepancy with source samples based on the prediction of a domain dis-
criminator. However, those strategies do not fit modern adaptation with deep
nets. To our knowledge, AADA [34] is the only prior work that learns actively
domain invariant representations and achieves the state-of-the-art for Active
Domain Adaptation. AADA is the most relevant work to compare with Sage.

7 Conclusion

We have introduced Sage, an efficient method for ADA which identifies target
samples that are likely to improve representations’ transferability when anno-
tated. It relies on two core components; a stochastic embedding of the gradient
of the transferability loss and a k-means++ initialization, which guarantees that
each annotation round annotates a diverse set of target samples. Through various
experiments, we have demonstrated the effectiveness of Sage and its capacity to
take the best of uncertainty, representative, and diversity sampling. New SSDA
strategies when using Sage is an interesting direction for future works.
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30. Saha, A., Rai, P., Daumé, H., Venkatasubramanian, S., DuVall, S.L.: Active su-
pervised domain adaptation. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. pp. 97–112. Springer (2011)

31. Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain
adaptation via minimax entropy. In: Proceedings of the IEEE International Con-
ference on Computer Vision. pp. 8050–8058 (2019)

32. Sener, O., Savarese, S.: Active learning for convolutional neural networks: A core-
set approach. In: ICLR (2018)

33. Settles, B.: Active learning literature survey. Tech. rep., University of Wisconsin-
Madison Department of Computer Sciences (2009)

34. Su, J.C., Tsai, Y.H., Sohn, K., Liu, B., Maji, S., Chandraker, M.: Active adversarial
domain adaptation. In: The IEEE Winter Conference on Applications of Computer
Vision. pp. 739–748 (2020)

35. Wang, D., Shang, Y.: A new active labeling method for deep learning. In: 2014
International joint conference on neural networks (IJCNN). pp. 112–119. IEEE
(2014)

36. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: Advances in neural information processing systems. pp.
3320–3328 (2014)

136 V. Bouvier, P. Very, C. Chastagnol, M. Tami, H. Céline
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