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Preface

Science, technology, and commerce increasingly recognise the importance of ma-
chine learning approaches for data-intensive, evidence-based decision making.
This is accompanied by increasing numbers of machine learning applications
and volumes of data. Nevertheless, the capacities of processing systems or hu-
man supervisors or domain experts remain limited in real-world applications.
Furthermore, many applications require fast reaction to new situations, which
means that first predictive models need to be available even if little data is
yet available. Therefore approaches are needed that optimise the whole learning
process, including the interaction with human supervisors, processing systems,
and data of various kind and at different timings: techniques for estimating the
impact of additional resources (e.g. data) on the learning progress; techniques
for the active selection of the information processed or queried; techniques for
reusing knowledge across time, domains, or tasks, by identifying similarities and
adaptation to changes between them; techniques for making use of different types
of information, such as labeled or unlabeled data, constraints or domain knowl-
edge. Such techniques are studied for example in the fields of adaptive, active,
semi-supervised, and transfer learning. However, this is mostly done in separate
lines of research, while combinations thereof in interactive and adaptive ma-
chine learning systems that are capable of operating under various constraints,
and thereby address the immanent real-world challenges of volume, velocity and
variability of data and data mining systems, are rarely reported. Therefore, this
workshop and tutorial aims to bring together researchers and practitioners from
these different areas, and to stimulate research in interactive and adaptive ma-
chine learning systems as a whole. It continues a successful series of events at
ECML PKDD 2017 in Skopje (Workshop & Tutorial), IJCNN 2018 in Rio (Tu-
torial), and ECML PKDD 2018 in Dublin (Workshop).

The workshop aims at discussing techniques and approaches for optimising
the whole learning process, including the interaction with human supervisors,
processing systems, and includes adaptive, active, semi-supervised, and trans-
fer learning techniques, and combinations thereof in interactive and adaptive
machine learning systems.

All in all, we accepted six regular papers (9 papers submitted) and three
short papers (4 submitted) to be published in these workshop proceedings. The
authors discuss approaches, identify challenges and gaps between active learning
research and meaningful applications, as well as define new application-relevant
research directions. We thank the authors for their submissions and the program
committee for their hard work.
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Foundations of Interactive Adaptive Learning

Georg Krempl

Information and Computing Sciences, Utrecht University, Utrecht
g.m.krempl@uu.nl

Abstract. This part starts with the classic stream mining paradigm.
In its context, we discuss the challenges posed by non-stationarity and
limitations in processing, storage, and supervision capacities. We briefly
summarize related techniques, e.g. for incremental processing, forgetting,
and change detection. Furthermore, we introduce techniques for optimis-
ing the interaction of a machine learning system with an oracle such as a
human supervisor. We review active machine learning techniques, with
focus on adaptive active learning for evolving and streaming data. We
discuss recent advances and conclude with an overview on open research
questions in adaptive active machine learning.

c© 2019 for this paper by its authors. Use permitted under CC BY 4.0.
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From Interactive Machine Learning to
Explainable Artificial Intelligence (ex-AI)

Andreas Holzinger

Medical University of Graz, Graz
andreas.holzinger@medunigraz.at

Abstract. In this part, we focus on the role of humans in state-of-the-
art decision systems. Thereby, we go beyond interactive machine learning
to explainable artificial intelligence. How can this be realized? How can
we include humans into the automated decision process and how can
me measure their intelligence? To answer these questions, we will talk
about different terms like interaction, reflection and discuss the underly-
ing principles of intelligence and cognition. In the next part, we provide
fundamentals to measure and evaluate human intelligence with biometric
technologies, sensor arrays and affective computing to measure emotion
and stress. The tutorial concludes with a discussion on ethical, legal and
social issues of explainable AI systems.

c© 2019 for this paper by its authors. Use permitted under CC BY 4.0.
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Evaluation of Interactive Machine Learning
Systems

Nadia Boukhelifa

INRA, Université Paris-Saclay, Paris
nadia.boukhelifa@inra.fr

Abstract. The evaluation of interactive machine learning systems re-
mains a difficult task. These systems learn from and adapt to the human,
but at the same time, the human receives feedback and adapts to the
system. Getting a clear understanding of these subtle mechanisms of
co-operation and co-adaptation is challenging. In this chapter, we re-
port on our experience in designing and evaluating various interactive
machine learning applications from different domains. We argue for cou-
pling two types of validation: algorithm-centred analysis, to study the
computational behaviour of the system; and human-centred evaluation,
to observe the utility and effectiveness of the application for end-users.
We use a visual analytics application for guided search, built using an
interactive evolutionary approach, as an exemplar of our work. Our ob-
servation is that human-centred design and evaluation complement al-
gorithmic analysis, and can play an important role in addressing the
“black-box” effect of machine learning. Finally, we discuss research op-
portunities that require human-computer interaction methodologies, in
order to support both the visible and hidden roles that humans play in
interactive machine learning.

c© 2019 for this paper by its authors. Use permitted under CC BY 4.0.
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Toward Faithful Explanatory Active Learning
with Self-explainable Neural Nets?

Stefano Teso

KU Leuven, Leuven, Belgium
stefano.teso@cs.kuleuven.be

Abstract. From the user’s perspective, interaction in active learning is
very opaque: the user only sees a sequence of instances to be labeled,
and has no idea what the model believes or how it behaves. Explanatory
active learning (XAL) tackles this issue by making the model predict and
explain its own queries using local explainers. By witnessing the model’s
(lack of) progress, the user can decide whether to trust it. Despite their
promise, existing implementations of XAL rely on post-hoc explainers,
which can produce unfaithful and fragile explanations, which misrepre-
sent the beliefs of the predictor, confuse the user, and affect the quality of
her supervision. As a remedy, we replace post-hoc explainers with self-
explainable models, and show how these can be actively learned from
both labels and corrected explanations. Our preliminary results show-
case the dangers of post-hoc explanations and hint at the promise of our
solution.

Keywords: Machine Learning · Active Learning · Explainability

1 Introduction

Explainable machine learning has so far mostly focused on black-box models
learned offline [8]. It was recently observed that interactive protocols can be
black-box too [24, 16]. For instance, in active learning (AL), the user receives a
sequence of instances (e.g. images, documents) to be labeled, but can witness
neither the behavior of the predictor nor its beliefs.

Explanatory active learning (XAL) tackles this issue by injecting explana-
tions into the learning loop [24]: whenever asking the user to label an instance,
the model also shows a prediction for that instance and an explanation for the
prediction. The explanations are obtained with a local explainer [14, 8], which
summarizes and visualizes the local behavior of the predictor in terms of inter-
pretable feature relevance or other understandable artifacts. By witnessing the
evolution of the beliefs and decisions of the model, the user can justifiably grant

* The author is grateful to Kristian Kersting for many useful discussions and to
Giuseppe Marra for help with the implementation. This work has received funding
from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No. [694980] SYNTH:
Synthesising Inductive Data Models).

c© 2019 for this paper by its authors. Use permitted under CC BY 4.0.
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2 S. Teso

or revoke trust to it. This is analogous to trust between individuals, which re-
quires to develop appropriate expectations through interaction [23]. In XAL, the
user is also free to correct the explanations by, e.g., indicating any irrelevant or
sensitive features that the model is currently relying on. This extra supervision
is necessary to correct models that are “right for the wrong reasons” [19].

Existing implementations of XAL make use of post-hoc local explainers—
for instance, caipi [24] uses lime [18]—which treat the predictor being learned
as a black-box. These approaches extract explanations through an approximate
model translation [5] step. The overall process can produce unfaithful, fragile
explanations that misrepresent the model’s beliefs and have high-variance [1,
2]. Unfaithful and unstable explanations may confuse the user and affect the
quality of the user-provided corrections. More generally, such explanations are
not trustworthy and conflict with the purpose of explanatory interaction.

As a remedy, we propose replacing post-hoc explainers with self-explainable
neural networks (SENNs), a recently proposed class of models that automatically
explain their own predictions. Intuitively, SENNs combine the transparency of
linear models with the flexibility of neural nets [15]. The explanations produced
by SENNs are exact, robust to small perturbations, and cheap to compute. In
contrast with standard interpretable models (e.g. shallow decision trees), SENNs
can tackle complex problems—including representation learning—via gradient
descent. In order to integrate them into XAL, we show how to learn SENNs from
labels and corrections directly by combining classification and ranking losses.
Our preliminary empirical analysis shows that SENNs can substantially improve
the quality of the explanations used in XAL and can be actively learned from
labels and corrections.

Summarizing, we: 1) highlight the risks of unfaithful explanations in in-
teractive learning; 2) propose a novel implementation of XAL based on self-
explainable neural nets; 3) propose a joint loss to learn SENNs from labels and
corrections directly; 4) report on preliminary experiments that showcase the
behavior of post-hoc explainers and the promise of our solution.

2 Background

In the following, we will stick to binary classification and indicate instances as
x ∈ X and labels as y ∈ Y = {0, 1}. Our observations can be easily generalized
to the multi-class case.

2.1 Post-hoc Local Explainers

Given a classifier f : X → Y, for instance a neural network or a random forest,
post-hoc local explainers explain individual predictions without looking at the
exact inference steps performed by f [14]. Here we briefly detail lime [18], which
is central in current XAL implementations.

In order to explain a prediction y0 = f(x0), lime learns an interpretable
local model g0 that mimics f in the neighborhood of x0, and then reads off an

Toward Faithful Explanatory Active Learning
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Toward Faithful Explanatory Active Learning 3

explanation from it. The local model is a sparse linear predictor or a shallow
decision tree [18] built with (user-provided) interpretable features ψ(x). These
may capture, e.g., individual words in document classification or objects in im-
age tagging. The local model is learned from a synthetic dataset that describes
counterfactual (“what if”) information about switching on / off the interpretable
features on f(x0).

More formally, the process amounts to:

1. Sampling s interpretable instances ξ1, . . . , ξs by randomly perturbing the
interpretable representation of x0, namely ξ0 = ψ(x0);

2. Labeling each instance ξi using the target model yi = f(xi), where xi =
ψ−1(ξi) is the pre-image of ξi;

3. Weighting each example (ξi, yi) by its similarity to ξ0, i.e., k(ξi, ξ0); the
kernel function k determines the size and shape of the neighborhood of ξ0;

4. Fitting a local model g0 on the synthetic dataset via cost-sensitive learning,
so that examples outside of the neighborhood do not have much of an impact;
this is a form of model translation [5];

5. Extracting an explanation from g0. For instance, if g0 is linear (i.e., g0(x) =∑
j wjψj(x)) then the explanation describes the contributions of the inter-

pretable features according to the weights wj . In practice only the largest
weights are used. If g0 is a decision tree, then the feature contributions can
be read off from the path connecting the root to the predicted leaf.

The advantage of this procedure is that it is completely model-agnostic, as it
treats f as a black-box. The downside, however, is that it is not exact, and so
g0 may not approximate f well. We will discuss the consequences later on.

2.2 Explanatory Active Learning

Pool-based active learning (AL) is designed for settings where labels are scarce
and expensive to obtain [22, 9]. Learning proceeds iteratively. Initially, the model
has access to a small set of labeled examples L ⊆ X × Y and a large pool of
unlabeled instances U ⊆ X . In each iteration, the model asks an oracle (i.e.
a human expert or a measurement device) to label any instance in U—for a
price. The newly labeled instance is then moved to L and the model is adapted
accordingly. These steps are repeated until a labeling budget is exhausted or the
model is deemed good enough. The key challenge in AL is to design a strategy
for selecting informative and representative query instances, so to learn good
predictors at a small labeling cost. A common choice is uncertainty sampling
(US) [13], which picks instances where the model is most uncertain in terms of,
e.g., margin or entropy.

In order to make the interaction more transparent and directable, explana-
tory active learning (XAL) injects explanations into the learning loop and en-
ables the user to interact with them [24]. In XAL, when the model asks the user

to label an instance x, it also presents a prediction for that instance ŷ = f̂(x)
and an explanation ẑ for the prediction. In the caipi implementation of XAL,

Toward Faithful Explanatory Active Learning
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the explanation is computed with lime. In exchange, the user provides the true
label of x and optionally corrects the explanation. The correction indicates, for
instance, which interpretable features (e.g. pixels, words) are erroneously being
used by the model. Since models cannot learn from corrections directly, caipi
converts corrections into counter-examples, as follows: if the user indicated that
some interpretable feature ψi(x) is wrongly being used by the model, then caipi
creates c copies of x where feature ψi is randomized, and attaches the true la-
bel to them. Intuitively, the counter-examples teach the predictor to predict the
correct label independently from the value associated to the irrelevant feature.
It was shown that, for lime, explanation corrections describe local orthogonality
constraints [24], and that counter-examples approximate these constraints.

By combining interactions and explanations, XAL helps the user to build a
mental model of the predictor being learned, which is necessary for justifiably
according trust to it. In addition, by virtue of learning from explanation correc-
tions, XAL makes it less likely that the model learns to predict the right labels
for the wrong reasons. We will see, however, that these promises can be difficult
to keep when post-hoc explainers are involved.

2.3 Self-explainable Neural Networks

Sparse linear models over interpretable features are canonically considered to be
highly interpretable. These models have the form1 f(x) = σ(w>φ(x)), where σ is
a sigmoid function, w ∈ Rn is constant, and φ : X → Rn is a fixed, interpretable
feature map. The contribution of the jth feature to the output of the predictor
is determined by the corresponding weight. Despite their interpretability, sparse
linear models are limited to relatively simple learning tasks.

Self-explainable neural networks (SENNs) upgrade linear models by substan-
tially increasing their capacity and flexibility while preserving their interpretabil-
ity [15]. More specifically, SENNs have the same functional form, but allow the
weights w to change across the space, i.e.:

f(x) = σ(w(x)>φ(x)) (1)

Here, both w(x) and φ(x) are (arbitrarily deep) neural networks. The inner
product can be replaced by any appropriate aggregation function [15]. In order
to make w(x) act as an explanation, two additional restrictions are put in place:

1. The learned feature function φ has to be interpretable. This can be achieved
either by designing it by hand (as with linear predictors and lime), by defin-
ing it in terms of (learned) prototypes, or by other means; see [15] for details.

2. As with linear models, the explanations should capture the local behavior of
the model and not be affected by small displacements of the input instance.
This is guaranteed by constraining w to vary slowly with respect to φ.

More formally, w is required to be locally difference bounded by φ, as per the
following definition:

1 Here and below, the bias term is left implicit.

Toward Faithful Explanatory Active Learning
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Definition 1 ([15]). A function f : Rn → Ra is locally difference bounded by
a function g : Rn → Rb if for every x0 ∈ Rn there exists two constants δ > 0
and L > 0 such that for every x ∈ Rn:

‖x− x0‖ < δ =⇒ ‖f(x)− f(x0)‖ ≤ L‖g(x)− g(x0)‖

In other words, for every point x0 there is a neighborhood within which2 the
change in f is bounded by the change in g. Notice that the local Lipschitz
“constant” L is allowed to vary with x0.

This requirement is enforced during learning by penalizing the model for any
deviations from linearity through the following regularization term:

Ω(f)
def
= ‖∇xf(x)−w(x)>Jx‖

where Jx is the Jacobian matrix. The model f is learned by minimizing the
empirical risk of some classification loss `Y plus the above regularizer, i.e.:

minf Ê(x,y) [`Y (f(x), y) + αΩ(f)] (2)

Here Ê indicates expectation over mini-batches and α ≥ 0 is a hyperparameter.
As usual with neural networks, minimization is performed with gradient descent
techniques. Of course, an additional term encouraging the output of w(x) to be
sparse can be considered. We will see later on that this is automatically the case
in our extension of SENNs to explanatory active learning.

It is worth pointing out that SENNs are quite different from attention mod-
els, which are yet another way of explaining (to some extent) neural networks.
Indeed, the former explain exactly which features contribute to the prediction,
as well as their polarity. The features themselves are arbitrary (interpretable)
functions of the inputs. Attention models, in contrast, identify which input fea-
tures (e.g. pixels) are relevant, but not how they contribute to the decision nor
whether they are against/in favor.

3 Toward Faithful XAL

3.1 The Dangers of Post-hoc Explanations

Let us start by discussing the case of lime, which is at the core of existing XAL
implementations. In this case, the accuracy of the model translation process
(described above) depends critically the choice of model class of g0, interpretable
features ψ, kernel k, and number of samples s.

For instance:

1. If the kernel k is not chosen correctly (i.e. if it is too small, too broad, or has
the wrong topology), then the synthetic dataset may fail to capture label
changes around x0, as shown in Figure 1.

2 This can be limiting in classification scenarios, because the output should change
abruptly when crossing the decision boundary. The formulation can be modified to
account for this, but we keep it as is, for simplicity.

Toward Faithful Explanatory Active Learning
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Fig. 1. Examples on which lime produces unfaithful explanations. The decision surface
of f is represented by the colored areas: light green means positive, light red negative.
The pink circle represents the kernel k: points inside of it are assigned substantial
weights while all others are not. Left: all synthetic examples with large weight have the
same label. Middle: the synthetic examples fail to capture the non-additive interaction
of the two features. Right: the kernel is too broad, and the synthetic dataset is highly
complex and non-linear.

2. If the number of samples s is too small, the dataset may also not be repre-
sentative.

3. ψ determines whether the pre-image of zi is unique; if this is not the case,
then the labeling step becomes unstable.

In all these cases, lime produces high-variance explanations that substantially
misrepresent the behavior of f . Increasing the number of samples may improve
the situation, but also the runtime, and may not be enough to stabilize the
explanations anyway.

Crucially, the same high-level argument applies to all post-hoc explainers,
because all of them treat f as a black-box and thus—by construction—must
include an inexact model translation step.

From the standpoint of XAL, unfaithfulness has two major consequences.
First, high-variance explanations portray the model as behaving semi-randomly,
regardless of whether it is good or not. The user may also perceive that her
supervision has no effect, and feel lack of control. In rare cases, caipi may also
accidentally persuade the user into trusting a bad model. Both cases are prob-
lematic in sensitive applications, like the ones that XAL is designed for. More
generally, unfaithful explanations misrepresent the learned model, defeating the
purpose of explanatory active learning. Second, unfaithful explanations compro-
mise the usefulness of the corrections. If the user is confused by the explanations,
her corrections will be not as informative. Further, the correction may specify
not to use a feature that the model is not using anyway (or vice versa). Depend-
ing on the model being learned, correcting the same feature too many times may
also lead to learning instabilities.

It is therefore desirable to fix the XAL pipeline to rely on faithful and
trustable explanations. In the next section, we show how to do so.

Toward Faithful Explanatory Active Learning
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Toward Faithful Explanatory Active Learning 7

Algorithm 1 Pseudocode of cali: L is the set of labeled examples, U is the set
of unlabeled instances, and T is the query budget.

1: procedure cali(L, U , T )
2: C ← ∅
3: f ← fit(L, C) . Eq. 3
4: repeat
5: x← select(f,U), ŷ ← f(x), ẑ ← w(x)
6: Present instance x, prediction ŷ, and explanation ẑ to the user
7: Receive label y and explanation correction z̄
8: Remove x from U , add (x, y) to L, add z̄ � ẑ to C
9: f ← fit(L, C) . Eq. 3

10: until budget T is exhausted or f is good enough
11: return f

3.2 Explanatory Active Learning with SENNs

Our proposed algorithm—dubbed Calimocho, or cali for short—follows closely
the XAL learning loop; the pseudocode is listed in Algrithm 1. Notice that f
here is a SENN. Explanation corrections are collected in a set C, initially empty.
In each iteration, the algorithm chooses an instance x ∈ U (using uncertainty
sampling, as caipi, for simplicity), predicts its class ŷ, and generates an ex-
planation ẑ for the prediction (line 5). The explanation ẑ is simply read off of
w(x), i.e., ẑ = w(x), without any projection or sampling step. All components
are presented to the user (lines 6–7), who replies with the true label y of x and
optionally with an improved explanation z̄. Finally, the dataset is updated and
the preference z̄ � ẑ is added to the corrections C.

The learning step requires to strategy to train SENNs using corrections too.
One option is to follow caipi, an use counter-examples. However, these only
approximately capture the constraint imposed by the correction, e.g., that the
label should not depend on a particular interpretable feature. Depending on the
application, there is also a (slim) chance that the counter-examples are actually
wrong. Feature influence supervision solves this issue by asking the user [20],
but this can be cognitively costly.

Instead, we opt for learning SENNs directly from corrections, as follows. Re-
call that, given an explanation ẑ, a correction specifies, e.g., which features are
erroneously being used by the model. Applying the correction to ẑ leads to a
corrected explanation z̄. It is therefore natural to impose that w(x) generates
explanations that are closer to the corrected explanation rather than the pre-
dicted on. This can be accomplished by, e.g., minimizing the squared Euclidean
distance ‖w(x)− z̄‖22 while maximizing ‖w(x)− ẑ‖22. It is easy to see that this
is equivalent to imposing a ranking loss:

‖w(x)− z̄‖22 − ‖w(x)− ẑ‖22 = 2〈w(x), ẑ − z̄〉+
(
‖z̄‖22 − ‖ẑ‖22

)

Notice that the features that were not corrected by the user (i.e. z̄j − ẑj = 0) do
not contribute to the loss, as expected. Our solution also generalizes the input

Toward Faithful Explanatory Active Learning
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gradient constraints introduced in [19] from learning from full explanations to
corrections, which contain information about only few interpretable features.

Letting the dataset include instances x, labels y, and preferences z̄ � ẑ (rep-
resented with C in the pseudo-code), and denoting the ranking loss as `Z(w(x), z̄ �
ẑ) = 〈w(x), ẑ − z̄〉, cali fits f by extending Eq. 2 with the above loss:

minf Ê(x,z̄�ẑ,y) [λ`Y (f(x), y) + (1− λ)`Z(w(x), z̄ � ẑ) + αΩ(f)] (3)

Noisy corrections can be handled by tweaking the hyperparameter λ ∈ [0, 1].

3.3 Discussion

A few remarks are in order. First, cali trades off the model-agnosticism of
caipi for exactness and efficiency. This is desirable, since faithfulness is necessary
to justifiably establish trust, especially in sensitive applications. In addition,
despite their apparent simplicity, SENNs are very flexible non-linear models [15],
substantially more powerful than “standard” interpretable models (e.g. they
natively support representation learning) and easy to learn with state-of-the-art
gradient descent techniques.

It is natural to ask what kind of SENN architectures can be learned in a
label-scarce framework like active learning. On the one hand, shallow SENNs
can be learned efficiently from few labels alone. On the other, by supplementing
label information, we expect explanation corrections do help to actively learn
deep(er) models. Our preliminary results suggest that this might be the case.

4 Experiments

We address the following research questions:

Q1 Are the explanations output by LIME faithful?
Q2 Does cali learn from corrections?
Q3 Does explanatory feedback help learn deeper models?

In order to do so, we implemented cali3 and ran a preliminary experiment
with the synthetic color dataset used in [19, 24], where the goal is to classify
small synthetic images for the right reasons. The images are 5× 5 and have four
possible colors. An image is positive if i) either the four corners have the same
color, or ii) the top three middle pixels all have different colors. On all training
images either both rules are satisfied or neither is. This means that labels alone
are not enough to disambiguate between the two potential explanations. Both
images and explanations are represented as 5 × 5 × 4 one-hot arrays. Notice
that the two conditions can be easily expressed as linear concepts in this space.
As in [24], we consider true explanations z that highlight the k most relevant
pixels. The corrections instead highlight (a subset of the) pixels that are wrongly

3 Code at: github.com/stefanoteso/calimocho
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Fig. 2. Quality of the explanations produced by LIME for shallow SENNs trained
passively for 1000 epochs (x axis); s is the number of samples used by LIME, while
r is the number of repeats. Left: similarity between LIME explanations and the true
explanations in terms of recall@k. Middle: diversity between LIME explanations across
re-runs in terms of average pair-wise Euclidean distance between the r explanations.
Right: runtime of LIME in seconds.

highlighted in the predicted explanations ẑ. In all cases, we use a SENN where
φ(x) is simply the one-hot encoding of x and w(x) is a fully-connected feed-
forward neural network with L = 1, 3, 5 hidden layers. All results are 5-fold
cross-validated.

Q1: Are the explanations output by caipi faithful? We trained a SENN for 1000
epochs and every 250 iterations computed the recall@k of the explanations pro-
duced by LIME on 10 random (but fixed) test examples. This was done by
looking at how many of the k highest scoring features in the SENN explanation
(which is exact) appear among the k highest scoring features found by LIME.
In practice, caipi stabilizes high-variance explanation by running LIME r times
and averaging the obtained explanations. To check whether this technique is ef-
fective, we repeated LIME r = 5, 10, 25 times and then measured the pair-wise
Euclidean distance between the r explanations. The results, in Figure 2, show
that the LIME explanations are never completely faithful, regardless of the num-
ber of samples s and repeats r, thus confirming our arguments about post-hoc
explainers. In addition, while increasing s does have a clear beneficial effect, r
is surprisingly not beneficial. Regardless, increasing either does have an effect
on runtimes, as shown by the right plot. In comparison, SENN explanations are
exact and robust by construction and also essentially free to compute, because
w(x) must be evaluated anyway whenever doing inference. In practice, evalu-
ating w amounts to forward propagation and takes a tiny fraction of a second
(data not shown). This can be a substantial advantage in interactive applications
to avoid making the user wait.

Q2: Does cali learn from corrections? In this experiment, we select each rule in
turn and use cali to actively learn a SENN from explanation corrections. The
ground-truth explanation highlight the 4 or 3 pixels that the decision actually
depends on, and the corrections identify the c = 1, . . . , 4 pixels whose predicted
weight wi(x) is farthest away from the correct weight. Figure 3 shows the label
loss `Y and the explanation loss `Z as more queries are made, up to 300. Turning
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Fig. 3. Test set performance of cali when learning from explanation corrections as
more queries are asked (x axis). Left: label loss `Y . Middle: explanation loss `Z . Right:
per-iteration runtime in seconds.

Fig. 4. Test set performance of cali on progressively deeper SENNs. as more queries
are asked (x axis). Left: label loss `Y . Middle: explanation loss `Z . Right: per-iteration
runtime in seconds.

on learning from corrections brings a huge benefit, as expected. Indeed, when no
corrections are provied (i.e. λ = 1), the SENN slowly learns the target concept,
as shown by the leftmost plot, while corrections help the SENN to converge
much faster. Even more importantly, unless corrections are enabled, the model
fails to be “right for the right reasons”, as the explanation loss diverges as
more labels are obtained (middle plot). Finally, the rightmost plot shows that
active learning cali is very efficient, requiring less than 0.2 seconds per iteration
on average. One surprising result is that increasing the number of corrections c
does not monotonically increase performance. This needs to be validated further;
however, the overall trend is clear and is consistent with the findings of [24]. The
results for the two rules and different query strategies (random and margin-based
uncertainty sampling) show exactly the same trend, and are not reported.

Q3: Does explanatory feedback help learn deeper models? Finally, we look at the
effect of learning from corrections while increasing the number of hidden lay-
ers L = 1, 3, 5 of w(x). The results of increasing L are reported in Figure 4.
Once again, the effect of corrections is very clear: they help the label loss to
decay faster, and are necessary for the explanation loss not to diverge. Most
importantly, these results hold regardless of the choice of L, with larger models
behaving much worse on explanation loss when learned from labels only. This
result is (preliminary but) very interesting especially in the light of the observa-
tion that caipi behaves best when learning sparser models [24]. In stark contrast,
cali seems to behave well even for deeper SENNs.

Toward Faithful Explanatory Active Learning

13



Toward Faithful Explanatory Active Learning 11

5 Related Work

Despite the surge of interest on explainable AI and machine learning, most re-
search has focused on passive learning, and specifically on (1) designing inter-
pretable predictors [25, 12] and (2) explaining black-box models such as neural
networks [3, 8]. Instead, we consider explanations in an interactive learning set-
ting.

We specifically study explanatory active learning (introduced in [24] in the
wider context of explanatory interactive learning) which injects explanations
into the active learning loop. Related approaches were proposed in [16], which
uses lime to communicate the exploration pattern of the active learner to the
user, and in [20], where a model is learned explicitly from feature-level feedback.
Like previous work on (interactive) feature selection and dual supervision [17, 7,
4, 21], these work either ignore the issue of trust or the advantages of learning
from corrections rather than explanations. Please see [24] for a discussion. Con-
ceptually, XAL is related to techniques like explanatory debugging [11], which
however targets simple predictors only. Similar themes have been championed
by [10].

The importance of explanation faithfulness has long been recognized [3]. More
recently, the hidden dangers of local explainability tools have been the subject of
a number of studies, e.g., [26] and [1], and the limitations of post-hoc explainers
have been studied in [2]. The issue of unfaithful explanations in explanatory in-
teractive learning, however, has not been considered before. These studies have
lead to developing exact and / or robust explanatory techniques like input gra-
dients [19] (aka instantaneous causal effects), average causal effects [6], and of
course SENNs [15]. To the best of our knowledge, however, SENNs are the only
method that 1) supports gradient-based optimization and interpretable repre-
sentation learning, 2) generates exact explanations that are robust to perturba-
tions, and 3) can be learned from labels and—with this paper—from corrections
directly.

6 Conclusion and Outlook

The present paper highlights the dangers of post-hoc explainers for explanatory
active learning (XAL). Post-hoc explainers are prone to generating unfaithful
explanations that misrepresent the target predictor and prevent the user from
appropriately allocating trust to it. In order to solve this issue, we extend exist-
ing XAL implementations by replacing post-hoc explainers with self-explainable
neural networks (SENNs). SENNs automatically generate exact and robust ex-
planations for their own predictions. In order to integrate them with XAL, we
show how to learn SENNs from labels and explanation corrections by combin-
ing classification and ranking losses. Our preliminary experiments showcase the
fragility of post-hoc explainers and the potential of SENNs in explanatory active
learning.

Of course, our results need further validation, including a more direct com-
parisong with caipi, which we plan to carry on soon. They also hint at the

Toward Faithful Explanatory Active Learning
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promise of corrections for learning deeper networks even when labels are scarce.
We plan to investigate this direction in future work.
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Abstract. Active learning with one-class classifiers involves users in the
detection of outliers. The evaluation of one-class active learning typically
relies on user feedback that is simulated, based on benchmark data. This
is because validations with real users are elaborate. They require the de-
sign and implementation of an interactive learning system. But without
such a validation, it is unclear whether the value proposition of active
learning does materialize when it comes to an actual detection of out-
liers. User studies are necessary to find out when users can indeed provide
feedback. In this article, we describe important characteristics and pre-
requisites of one-class active learning for outlier detection, and how they
influence the design of interactive systems. We propose a reference ar-
chitecture of a one-class active learning system. We then describe design
alternatives regarding such a system and discuss conceptual and techni-
cal challenges. We conclude with a roadmap towards validating one-class
active learning with user studies.

Keywords: Active learning · One-class classification · Outlier detection
· User study.

1 Introduction

Active Learning is the paradigm to involve users in classifier training, to improve
classification results by means of feedback. An important application of active
learning is outlier detection. Here, one-class classifiers learn to discern inliers
from outliers. Examples are network security [17,37] or fault monitoring [45]. In
these cases, one-class classifiers with active learning (OCAL) ask users to pro-
vide a binary label (“inlier” or “outlier”) for some of the observations. Then they
use these labels in subsequent training iterations to learn an accurate decision
boundary. OCAL differs from other active learning applications such as balanced
binary or multi-class classification. This is because the strategies to select ob-
servations for feedback (“query strategies”) take into account that outliers are
rare to non existent.

Over the last years, several OCAL-specific query strategies have been pro-
posed. They focus on improving classification accuracy with minimal feedback [3,
15, 16, 18, 45]. To evaluate them experimentally, authors generally rely on data
sets with an available ground truth, in order to simulate user feedback. On the

c© 2019 for this paper by its authors. Use permitted under CC BY 4.0.

17



2 Trittenbach et al.

one hand, this seems to be convenient, since it allows to evaluate algorithmic
improvements without a user study. On the other hand, simulating user feed-
back requires some assumptions on how users give feedback. These assumptions
are generally implicit, and authors do not elaborated on them, since they have
become widely accepted in the research community. In particular, there are two
fundamental assumptions behind active learning :

(Feedback) Users provide accurate feedback independently from the pre-
sentation of the classification result and from the observation
selected for feedback (the “query”).

(Acceptance) Users do not question how the feedback provided changes
the classification results. Their motivation to provide feed-
back, even for many observations, does not hinge on their
understanding of how their feedback influences the classifier.

Think of an OCAL system that asks a user to provide a class label on a
20-dimensional real-valued vector, where features are the result of some pre-
processing, such as principal component analysis. We argue that, without further
information, users are unlikely to comprehend the query, and cannot provide ac-
curate feedback. This is in line with observations from literature [14,33]. Even if
they could provide the feedback, any change in the classifier is not tangible. This
is because there is no suitable visualization or description of a 20-dim decision
boundary. We argue that users may question whether their feedback has a posi-
tive effect on the classifier, or even any effect at all, lose interest, and eventually
discontinue to provide feedback.

This is a peculiar situation: On the one hand, the value proposition of active
learning is to obtain helpful information from users that is not yet contained in
the training data. On the other hand, there currently is no validation whether one
can realize this value in an actual application. Such a validation would require
to implement an interactive OCAL system and to conduct a user study.

However, such an experimental validation is difficult, since there are sev-
eral conceptual and technical issues. We have experienced this first hand, when
we have looked at smart meter data of an industrial production side [7, 42] to
identify unusual observations, and to collect respective ground truth labels from
human experts. In our preliminary experiments with this data, we found that
both active-learning assumptions do not hold in practice. In particular, we have
observed that domain experts ask for additional information such as visualiza-
tions and explanations that go way beyond a simple presentation of classification
results. Since there is an over-reliance on active-learning assumptions, only little
effort has been spent on making OCAL interpretable, comprehensible, and us-
able. So it is unclear what the minimal requirements behind an OCAL system
are to carry out a user study. Second, there are conceptual issues that are in
the way of implementing OCAL systems. One issue is that the design space of
OCAL systems is huge. It requires to define a learning scenario, to choose a
suitable classifier and a learning strategy, as well as selecting multiple hyperpa-
rameter values. In addition, there may be several conflicting objectives: One may
strive to improve classification accuracy. Another objective may be to use OCAL
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as an exploratory tool, to present users with as many interesting instances as
possible. Another issue is that objectives of a user study are diverse. One may
want to collect a reliable ground truth for a novel data set, or to evaluate spe-
cific components of the active learning system, e.g., how well users respond to a
particular visualization. Third, there are technical issues which we have experi-
enced first hand when implementing an OCAL system prototype. For instance,
runtimes of training state-of-the-art classifiers may be too long for interactivity.
Another example is that it is unclear how to visualize decision boundaries in
multi-dimensional data sets.

Although there are many difficulties, we deem user studies imperative to
understand the determining factors behind realizing the value of OCAL. These
factors can serve as guidelines for data mining research and can eventually lead
to a more differentiated evaluation of novel query strategies and classifiers. The
objective of our article is to point out important characteristics and prerequisites
of OCAL and how they influence the design of interactive systems. To our knowl-
edge, this is the first overview on conceptual and technical challenges regarding
OCAL systems. We derive these challenges based on an architectural sketch on
the components of an existing OCAL system, which we have implemented as a
prototype. We conclude by proposing a roadmap towards validating OCAL with
user studies.

2 OCAL System Architecture

The purpose of an OCAL system is to facilitate experiments with several users.
An experiment is a specific technical configuration, i.e., a data set, a classifier, a
query strategy, and one or more users, the participants, who provide feedback.

An OCAL system consists of several modules. Participants interact with
the system through a participant interface that visualizes information on active

Validating One-Class Active Learning with User Studies

19



4 Trittenbach et al.

learning iterations, such as the classification result and the progress of the ex-
periment. The training of the classifier, query selection, and the preparation of
additional information such as visualizations and explanations take place in an
algorithm backend. Finally, there is a human operator who configures, monitors
and evaluates the experiments through an operator interface. This typically is
the researcher who conducts the experiments. Figure 1 is an overview of the
system architecture. In the following, we describe the different modules and link
them to our prototype implementation.

Algorithm Backend: On a technical level, the algorithm backend consists of
a classifier module SVDD.jl1 and a module OneClassActiveLearning.jl2, which
implements active learning components such as the query strategies. A third
module provides additional information, e.g., classifier visualizations. For our
prototype, we have implemented the classifiers, query strategies and basic vi-
sualization information in OcalAPI.jl3, a ready-to-use JSON REST API. This
decoupling allows to re-use the algorithm backend independent of the participant
and operator interface.

Operator Interface: The operator interface allows an operator to configure
so-called experiment setups. A setup consists of a data set, a parameterized
classifier and a query strategy. Depending on the research question, the operator
may also configure which information is displayed in the participant interface.
This gives way to A/B tests, to, say, validate if a certain visualization has an
effect on feedback quality. The operator can invite several users to participate in
an experiment run, i.e., an instantiation of an experiment setup. He can monitor
and inspect the experiment runs in an overview panel and export experiment
data for further analysis.

Participant Interface: The participant interface has two functions. First, it
is an input device to collect feedback during the experiment. Second, it provides
the participants with information that supports them to provide educated feed-
back. For instance, this may be a visualization of a classifier, a view on the raw
data or a history of classification accuracy over the past iterations. The par-
ticipant then provides feedback for some observations. During this process, the
interface captures user interactions, e.g., mouse movement and selection. When
the query budget or time limit is not exhausted, the participant proceeds with
the next iteration.

Our implementation of the interfaces is preliminary, since there are several
open challenges, both conceptual and technical (see Section 3). We plan to make

1 https://github.com/englhardt/SVDD.jl
2 https://github.com/englhardt/OneClassActiveLearning.jl
3 https://github.com/englhardt/OcalAPI.jl
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it publicly available in the future as well. An important takeaway from this sec-
tion is an intuition about how OCAL systems can be designed, on an architec-
tural level. This intuition may be useful to understand the following discussions
on the design space of OCAL systems and the challenges related to the three
modules.

3 Design Decisions for OCAL Systems

The design and implementation of OCAL systems are inherently interdisci-
plinary and require expertise from several areas, including data mining, human-
computer interaction, UX-design, and knowledge of the application domain. Al-
though all disciplines are important, we now focus on the data mining perspec-
tive. We first discuss different types of interaction and elaborate on the design
options for one-class classifiers and query strategies. We then present different
options to prepare information for users during the learning iterations. Finally,
we elaborate on several technical challenges when implementing OCAL systems.

3.1 Type of Interaction

The common definition of active learning is that a query strategy selects one or
more observations for feedback. So, strictly speaking, a user does not have the
option to also give feedback on other observations not selected by the system.
However, there are related disciplines that do away with this restriction. For
instance, one research direction is Visual Interactive Analytics (VIA) [8, 25,43],
where a user interactively explores outliers in a data set. VIA systems provide
different kinds of visualization to assist users in identifying outliers, in particular
with high-dimensional data sets. The unification of active learning and VIA is
Visual Inter-Active Labeling (VIAL) [6,27]. VIAL combines active learning with
user-supporting visualizations from the VIA community. Variants of VIAL and
active learning are conceivable as well. For instance, instead of asking for labels
of specific observations, the query strategy could provide a set of observations
from which users can select one or more to label.

It is an open question in which cases one should use VIAL or active learning.
A user study in [5] indicates that users label more observations if they are free
to choose the observations. However, the resulting classifier accuracy is higher
with an AL query strategy. It is unclear whether these insights transfer to out-
lier detection where classes are unbalanced. In fact, we see this as one of the
overarching questions to answer with user studies.

3.2 Type of Feedback

In this article, feedback is binary, i.e., users decide whether an observation be-
longs to the inlier or outlier class. However, other types of feedback are conceiv-
able as well. For instance, in multi-class settings, the system may ask users to
state to which classes an observation does not belong [10]. Another example is to
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ask users for feedback on features, as opposed to instances [13]. Existing OCAL
approaches in turn focus on binary feedback. It is an open question if and how
OCAL can benefit from allowing for different types of feedback.

3.3 OCAL Design Space

An OCAL system consists of three building blocks: the learning scenario, the
classifier, and the query strategy. In brief, a learning scenario are underlying
assumptions about the application and user interaction. This includes the feed-
back type, e.g., sequential labels, the budget available for feedback, as well as
assumptions on the data distribution, the objective of the learning process, e.g.,
to improve the accuracy of the classifier, and an initial setup, which includes how
many labels are available when the active learning starts. In addition, there are
several semi-supervised classifiers, such as SVDDneg [39], and query strategies,
e.g., high-confidence sampling [3], which one can combine almost arbitrarily with
any of the learning scenarios. Almost all classifiers and query strategies require
to set additional hyperparameters. Their value can have significant influence on
result quality, and a poor choice may bog it down. Moreover, a good query strat-
egy and hyperparemeter values may also depend on the active learning progress,
i.e., the number of labels already provided by the user.

Navigating this design space is challenging, and it is generally not feasible to
consider and evaluate all possible combinations. Although there is an overview
and a benchmark on OCAL [41], a good solution still is application-specific and
may require fine-tuning of several components.

3.4 Preparation of Information

Classifier training and query selection produce a lot of data. On a fine-granular
level, this includes the parameterized decision function for the classifier and in-
formativeness scores for the query strategy. After processing this data, query
strategies select the most informative instances and predict a label for each ob-
servation. In general, this data can be processed and enriched in many ways
before presenting it to a user. On a coarse level, one can provide users with
additional information, such as explanations of the classifier or contextual infor-
mation on the learning progress. We now discuss several types of information
to present during an active learning iteration: the query, the result, black-box
explanations and contextual information.

Query presentation: After selecting observations for feedback, “queries” in
short, they must be presented to the user. In general, there are two representa-
tions of a query. First, the query has a raw-data representation. Examples are
text documents, multimedia files, multi-dimensional time series of real-valued
sensors, or sub-graphs of a network. Second, the data often is pre-processed to
a feature representation, a real-valued vector that the classifier can process. In
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principle, queries can be presented to users in either representation. Our expe-
rience is that domain experts are more familiar with raw data and demand it
even if the feature representation is interpretable.

Next, one can provide context information for queries. For an individual
instance, one can show the nearest neighbors of the query or a difference to
prototypes of both classes. Another approach is to use visualization techniques
for high-dimensional data [28, 32] to highlight the query. One can also visualize
the score distribution over all candidate queries. Depending on the type of the
query strategy, it also is possible to generate heatmaps that indicate areas in the
data space with high informativeness [44] together with the query.

Result presentation: The presentation of a classification result largely de-
pends on the classifier. With OCAL, the classifiers predominantly used rely on
the notion of Support Vector Data Description (SVDD) [39]. In a nutshell, SVDD
is an optimization problem to fit a hypersphere around the data, while allowing
a small percentage of the data, the outliers, to lie outside the hypersphere. By
using the kernel trick, the decision boundaries can become of arbitrary shape.
So a natural presentation of SVDD is a contour plot that shows distances to
the decision boundary. However, when data has more than two dimensions, con-
tour plots are not straightforward. The reason is that contour plots rely on the
distance to the decision boundary for a two-dimensional grid of observations
(x1, x2). However, the distance depends on the full vector (x1, x2, . . . , xn) and
thus cannot be computed for low-dimensional projections. One remedy would be
to train a classifier for each of the projections to visualize. However, the classifier
trained on the projection may differ significantly from the classifier trained on
all dimensions. So a two-dimensional contour plot may have very little benefit.
With common implementations of one-class classifiers, one is currently restricted
to present results as plain numeric values, raw data, and predicted labels.

Black-Box Explanations: Orthogonal to inspecting the queries and the clas-
sification result, there are several approaches to provide additional explanations
of the classification result. The idea is to treat the classifier, or more generally
any predictive model, as a black box, and generate post-hoc explanations for the
prediction of individual observations. This is also called local explanation, since
explanations differ between instances. Recently, CAIPI, a local explainer based
on the popular explanation framework LIME [30], has been proposed to explain
classification results in an active learning setting [40]. The idea behind CAIPI is
to provide the user with explanations for the prediction of a query and ask them
to correct wrong explanations. Another application of LIME is to explain why an
observation has been selected as a query [29]. The idea behind this approach is to
explain the informativeness of a query by its neighborhood. The authors use un-
certainty sampling, and this approach may also work with other query strategies,
such as high-confidence sampling [3]. However, with more complex query strate-
gies, for instance ones that incorporate local neighborhoods [45] or probability
densities [16], applying LIME may not be straightforward. For outlier detection,

Validating One-Class Active Learning with User Studies

23



8 Trittenbach et al.

there exist further, more specific approaches to generate explanations for outlier-
ness. An example is to visualize two-dimensional projections for input features
that contribute most to an outlier score [19]. Other examples are methods from
the VIA community that allow users to explore outliers interactively [8, 25,43].

Contextual Information: The participant interface can also provide addi-
tional information that spans several active learning iterations. For instance, the
interface can give users access to the classification history, allow them to revisit
their previous responses, and give them access to responses of other users, if
available. This can entail several issues, such as how to combine possibly di-
verging responses from different users, and the question whether users will be
biased by giving them access to feedback of others. Studying such issues is fo-
cus of collaborative interactive learning [9]. Others have proposed to give users
access to 2D scatter plots of the data, the confusion matrix and the progress of
classification accuracy on labeled data [24]. In this case, accuracy measures may
be biased. For instance, after collecting a ground truth for the first few labels,
accuracy may be very high. It may decrease when more labels become available,
and the labeled sample covers a larger share of the data space. So it remains
an open question whether contextual information will indeed support users to
provide accurate feedback.

To conclude, one faces many options in the design of OCAL systems. In
particular, there are many approaches to support users with information so that
they can make informed decisions on the class label. However, the approaches
discussed have not yet been evaluated by means of user studies. Instead, they
are limited to a theoretical discussion, simulated feedback based on benchmark
data, or pen and paper surveys [40]. It is largely unclear which methods do
enable users to provide feedback and indeed improve the feedback collected.

3.5 Technical Challenges

Active learning induces several technical requirements to make systems inter-
active, and to collect user feedback. Most requirements are general for active
learning systems But their realization with one-class classifiers is difficult.

Cold Start In most cases, active learning starts with a fully unsupervised set-
ting, i.e., there is no labeled data available. This restricts the possible combina-
tions of classifiers and query strategies in two cases. First, some query strategies,
e.g., sampling close to the decision boundary, require a trained one-class classi-
fier to calculate informativeness. In this case, the classifier must be applicable
both in an unsupervised and a supervised setting. Second, some query strategies
rely on labeled data, e.g., when estimating probability densities for the inlier
class [15, 16]. In this case, one cannot calculate informativeness without labels.
Current benchmarks mostly avoid this issue by simply assuming that some ob-
servations from each class are already labeled. In a real system, one must think
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about how to obtain the initially labeled observations [2, 21]. One option would
be to start with a query strategy that does not require any label, such as random
sampling, and switch to a more sophisticated strategy once there are sufficiently
many labels. Another option is to let users pick the observations to label in
the beginning, and then switch to an active learning strategy [2, 6]. However,
deciding when to do switches between query strategies with OCAL is an open
question.

Batch Query Selection Currently, query selection for one-class classifiers is
sequential, i.e., for one observation at a time. However, this sequentiality may
have several disadvantages, such as frequent updating and re-training of the one-
class classifier. Further, it might be easier for users to label several observations in
a batch than one observation at a time [34]. This may be the case when showing a
diverse set of observations helps a user to develop an intuition regarding the data
set. However, there currently are no strategies to select multiple observations in
batches with one-class classifiers. An open question is whether strategies that
have been proposed for other use cases, such as multi-class classification [12], are
applicable with one-class classifiers.

Incremental Learning The runtime for updating a classifier constrains the
frequency of querying the user. In particular, excessive runtimes for classifier
training result in long waiting times and do away with interactivity. Intuitively,
there is an upper limit that users are willing to wait, but the specific limit
depends on the application.

Several strategies are conceivable to mitigate runtime issues. First, one can
rely on incremental learning algorithms [20]. However, state-of-the-art one-class
classifiers like SSAD [18] have been proposed without any feature for incre-
mental learning. Second, one can sub-sample to reduce the number of training
observations. Several strategies have been proposed explicitly for one-class clas-
sifiers [23,26,38]. But to our knowledge, there are no studies that combine sub-
sampling with OCAL. Finally, one can use speculative execution to pre-compute
the classifier update for both outcomes (inlier or outlier) while the user is de-
ciding on a label [36]. While such a strategy requires additional computational
resources, it might reduce waiting times significantly and improve interactivity.
The open question is how to proceed with pre-computing when the look-ahead
l is more than one feedback iteration. This is a combinatorial problem, and pre-
computing all 2l learning paths is intractable. Instead, one may use conditional
probabilities to pre-compute only the most likely search paths. However, there
currently is no method to plan pre-computation beyond l = 1. If users select
observations to label by themselves, pre-computation would require to compute
classifier update for all observations and outcomes, which is infeasible. Thus,
there is a trade-off between giving users flexibility to decide freely on which
observations to label, and the capabilities of pre-computation.
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Evaluation at Runtime Without a good quality estimate, it is impossible to
know whether the feedback obtained from a user already is sufficient [2], i.e., the
one-classifier has converged, and additional feedback would not alter the decision
boundary any further. However, evaluating the classification quality of OCAL
at runtime is difficult [22]. This issue exists in both, when benchmarking with
simulated feedback, and in real systems – here, we focus on the latter. Users
may become frustrated if they face periods where their feedback does not have
any effect.

However, showing users any estimated classification quality is difficult for two
reasons. First, there might be a short term bias, i.e., the classifier performance
might fluctuate significantly. This may be irritating, and it may be difficult to
assess for the user. Second, the number of observations in the ground truth
increases over time. With only a few labeled observations, the quality estimates
may have a large error. This error may reduce with more iterations. So the open
question is how to estimate classification quality reliably, and how to adapt
these quality estimates during learning. One conceivable option is to switch
between exploration and exploitation, i.e., switch from querying for examples
that improve classification quality to selection strategies that improve the quality
estimate of the classifier. However, there currently is no such switching method
for OCAL.

Management of Data Flows Developing an active learning system also re-
quires a sound software architecture. Although this is not a research challenge
per se, there are several aspects to consider when implementing OCAL systems.
One key aspect is the management of data flows. In particular, with a distributed
application, see Section 2, there are several locations where one has to retain the
data set, the classifier, the predictions, and the informativeness scores. For large
data sets in particular, transferring data between a client and a backend or load-
ing data sets from disc may affect runtimes significantly. This calls for efficient
data caching. Further, one must decide where computations take place. For in-
stance, to visualize contour plots, one must predict the decision boundary for a
grid of observations, possibly in multiple projections of the data. In this case,
transferring the model over the network may be very little overhead. This can be
an efficient strategy when evaluating the model for an observation is cheap. This
is the case with SVDD, since the model consists of only a few support vectors.
With multi-user studies, one may even reuse trained classifiers and informative-
ness scores from other user sessions with an equivalent feedback history. In this
case, it might be more efficient to pre-compute grid predictions in the backend.
So there are several trade-offs and factors that determine an efficient data flow.
There currently is no overview on these trade-offs. It also is unclear how they
affect design decisions for OCAL systems.
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4 Validating OCAL with User Studies

There are a few active learning user studies which have been conducted for special
use cases, such as text corpus annotation [1, 11, 31] and network security [4].
However, it is unclear how findings relate to outlier detection with OCAL –
the previous sections illustrate the peculiarities of this application. Further, the
plethora of design options make user studies with OCAL systems particularly
challenging.

Addressing all of the design options at once is not feasible, since there are
too many combinations of classifiers, query strategies and ways to prepare infor-
mation for users. So we propose to start with a narrow use case and to increase
the complexity of the OCAL system step-wise. Specifically, we have identified
the following steps towards a validation of OCAL in real applications.

(i) Simplified Use Case: Much of the value of active learning is in domains
where obtaining labels is difficult, even for domain experts. However, we
argue that one should identify a use case that many people can easily
relate to. This has several advantages. First, we deem reproducibility
more important than to obtain sophisticated insights on very special use
cases. User studies are easier to reproduce when they do not depend
on specific domain expertise. Further, when relationships in data are well
understood, one can more easily judge whether the presentation of queries
and results is accurate. So we argue to base a validation of OCAL on
standard benchmark data, for instance the hand-written digit image data
set MNIST4. Such a simplification also includes to fix the details of the
feedback process, for instance to “sequential feedback” and “no initial
labels”. If necessary, one should downsample data sets so that runtimes
of classifiers and query strategies are not a bottleneck.

(ii) Validation of Information Presented: The next step is to identify situa-
tions when users can give accurate feedback. Since the focus is to vali-
date a learning system with users, one should start with a data set with
available ground truth and select the best combination of classifier and
query strategy in an experimental benchmark. This might seem counter-
intuitive at first sight. In a real application, there generally are not suffi-
ciently many labels available to conduct such a benchmark – in fact, this
may even be the motivation for active learning in the first place [2, 35].
However, we argue that this is a necessary step to break the mutual de-
pendency between selecting a good setup and collecting labels. Given a
combination of classifier and query strategy, one can then apply different
query and result presentations and work with explanations and contex-
tual information. By evaluating this step with user experiments, one can
derive assumptions which, if met, enable users to provide accurate feed-
back.

(iii) Validation of Classifier and Learning Strategy: Based on these assump-
tions, one can vary the dimensions that have been fixed beforehand. This

4 http://yann.lecun.com/exdb/mnist/
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is, one fixes the information presented to the user and varies the query
strategies and classifiers. Further, one may validate specific extensions
such as batch query strategies.

(iv) Generalization: The first step of generalization is to scale the experiments
to a large number of observations, using the techniques discussed in Sec-
tion 3.5. Finally, one can then validate the approach on similar data sets,
e.g., on different image data.

We expect the findings from these steps to be two-fold. On the one hand, we
expect insights that are independent from the use case. For instance, whether
scalability techniques are useful is likely to be use-case independent. On the other
hand, many findings may depend on the type of data at hand. Explanations based
on image data may be very different from the ones for, say, time series data.

Our OCAL system prototype already includes different classifiers and query
strategies, see Section 2. So, in general, any researcher can already use our system
to conduct Step (i) and the pre-selection of the query strategy and classifier
information required for Step (ii). Regarding our prototype, the next steps are
to select and implement a working set of query and result presentations, as well
as to include black-box explainers and contextual information.

5 Conclusions

Validating One-Class Active Learning through user studies is challenging. One
reason is that there are several open conceptual and technical challenges in
the design and implementation of interactive learning systems. This article has
featured a systematic overview of these challenges, and we have pointed out
open research questions with one-class active learning. Next, we have sketched
an architecture of a one-class active learning system, which we have implemented
as a prototype. Based on it, we propose a roadmap towards validating one-class
active learning with user studies.
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Abstract. One of the main challenges associated with supervised learn-
ing under dynamic scenarios is that of periodically getting access to labels
of fresh, previously unseen samples. Labeling new data is usually an
expensive and cumbersome process, while not all data points are equally
valuable. Active learning aims at labeling only the most informative
samples to reduce cost. In this paradigm, a learner can choose from which
new samples it wants to learn, and can obtain the ground truth by asking
an oracle for the corresponding labels. We introduce RAL – Reinforced
stream-based Active Learning –, a new active-learning approach, coupling
stream-based active learning with reinforcement-learning concepts. In
particular, we model active learning as a contextual-bandit problem,
in which rewards are based on the usefulness of the system’s querying
behavior. Empirical evaluations on multiple datasets confirm that RAL
outperforms the state of the art, both by improving learning accuracy and
by reducing the number of requested labels. As an additional contribution,
we release RAL as an open-source Python package to the machine-learning
community.

Keywords: Stream-based active learning · Reinforcement learning · Bandits

1 Introduction

A wide range of popular end-user applications such as Skype or Facebook Mes-
senger request users’ feedback about their experience at the end of a session.
This user feedback is paramount for such services, as they may use the massively
collected information to build prediction models shedding light on service per-
formance, user engagement, preferences, etc. A major challenge when querying
users is the fact that asking too often is annoying and might have negative
consequences on engagement. In a general supervised-learning scenario, labeled
data is extremely important, but labeling data is an expensive and tedious task,
especially if based on human effort.

Active learning [9] offers a solution to the data exploration and exploitation
trade-off, allowing a learner to interactively query the label of only the most
informative samples. Active learning is generally used in an offline setup, to limit
the number of labels required from a predefined set of unlabeled samples.

c© 2019 for this paper by its authors. Use permitted under CC BY 4.0.
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The learning tasks we tackle in this paper have two specific characteristics
which are not covered by offline active learning: first, the learning data is time-and-
size unbounded; second, it comes in the form of an online, non-periodic, sequential
stream of samples. An appropriate learning approach should be able to track the
evolution of the oracle feedback and the underlying concept drifts. In addition, it
should do so by smartly and dynamically deciding at which specific times it is
better to query the oracle. This would constantly improve the model-prediction
capabilities and avoid unnecessarily querying the oracle.

Stream-based active-learning schemes have been proposed in the past, notably
in [16,17]. However, as in traditional active learning, the decision on whether to
request for a label or not is solely based on the the model’s prediction uncertainty,
and not on the informativeness of such a request. The question that is raised is:
can we improve the performance of stream-based active learning by considering
how informative the requested label was? We propose RAL – a novel Reinforced
stream-based Active-Learning approach – combining both traditional stream-
based active-learning techniques with reinforcement learning. While reinforcement
learning has already been used to solve pool-based active-learning problems, the
combination with stream-based active-learning algorithms is a mostly unexplored
topic. RAL is specifically designed for stream-based, time-unbounded data, and,
as we show next, it manages to improve the accuracy of the underlying supervised-
learning model, while also significantly reducing the number of requested labels,
compared to the state of the art. RAL is available as an open-source Python
package3.

2 Related Work

Many research efforts have already been undertaken in the field of active learning.
For example, [16,17] present three simple approaches for this learning paradigm.
Their proposed Randomized Variable Uncertainty approach tackles the problem
of stream-based active learning using the model’s prediction uncertainty to
decide whether to query and trying to detect concept drifts by randomizing the
certainty threshold used for querying decisions. [15] develops an active-learning
algorithm with two different classifiers: one “reactive” and one “stable”. The
stable classifier is trained on all available labeled instances, while the reactive
one learns on a window of recent instances. In [6], the authors present an active-
learning technique based on clustering and prediction uncertainty. [7] conceives
an approach relying on a modification of the Näıve Bayes classifier to update
the different learners through the queried samples. In particular, the author uses
one-versus-one classifiers to tackle multi-class problems and update the weights
of the different classifiers by comparing their predictions to the ground truth.
Krawczyk’s technique behaves similarly to ours. However, the major difference is
that he is using information about the classifiers’ prediction certainty (without
considering the corresponding weights) in order to adapt the minimum threshold

3 https://github.com/SAWassermann/RAL
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to query the oracle, while we rely on the usefulness of the decisions taken by
RAL to tune the system according to the data stream.

Extending active learning through reinforcement learning is currently a very
active research area. Active learning alone can easily converge on a policy of
actions that have worked well in the past, but are sub-optimal. Reinforcement
learning helps to improve the exploration-exploitation trade-off by letting the
learner take risks with an uncertain outcome. However, most proposals do not
consider the stream scenario, and operate on the basis of pool-based approaches.
In [2,5], authors rely on the multi-armed bandit paradigm. [5] develops ALBL,
which uses a modified version of EXP4 [1], a weight-updating rule, to attribute
adaptive weights to different learners based on rewards; the learner to use is
then determined through these weights; the chosen learner selects the samples in
the pool to hand to the oracle based on its uncertainty measure. The approach
described in [2] is similar to the one in [5], except for the reward-computation
scheme. Some other papers in the field of pool-based active learning are [20,22].
The algorithm presented in [10,11] relies on the same principles as the system
we are proposing, but tackles a different problem: Song’s goal is to introduce an
active-learning component into a contextual-bandit problem, while we are aiming
at solving an active-learning problem by using contextual bandits.

Other recent papers dealing with active learning and reinforcement learning
include [12,18,21,23]. However, most of them consider only one of the perspectives
addressed by RAL, namely the enhancement of pool-based active learning through
reinforcement learning [18,21,23], or the application of active learning to the
streaming setup [12]. Combining active learning with reinforcement learning in a
streaming, adaptive learning context is the most important contribution of RAL,
a very timely yet vaguely addressed problem in the literature. [19,24] use the
idea of learning to active learn, i.e. data-driven active learning. [19] proposes this
view on pool-based active learning: the querying decision for a sample is based
on an estimation of the accuracy improvement. [24] uses reinforcement learning
in stream-based active one-shot learning, but this work is different from RAL on
multiple aspects: (i) it tackles a different learning task, as it aims at detecting
new classes instead of improving overall classification accuracy, (ii) their scheme
relies on reinforcement learning only during the training phase and not once
deployed, while RAL continuously adapts its querying policy during the whole
incoming stream, and (iii) the system heavily relies on deep recurrent networks,
too cumbersome to use in real-time resource-constrained scenarios, unlike RAL.

3 Introducing RAL

RAL relies on prediction uncertainty and reinforcement-learning principles, using
rewards and bandit algorithms. The overall idea is summarized in Figure 1.

The intuition behind the different reward values is that we attribute a positive
reward in case our system behaves as expected, and a negative one otherwise,
to penalize it. RAL obtains rewards/penalties only when it is asking for ground
truth. In a nutshell, it earns a positive reward ρ+ in case it queries the oracle
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Fig. 1. Overall idea of the RAL system.

and would have predicted the wrong label otherwise (the system made the right
decision to ask for the ground truth) and a penalty ρ− (i.e. a negative reward)
when it asks the oracle even though the underlying classification model would
have predicted the correct label (querying was unnecessary). The rationale for
using reinforcement learning is that RAL learns not only based on the queried
samples themselves, but also from the usefulness of its decisions. The objective
function to maximize is the total reward

∑n
i=1 rn, where rn is the nth reward

(either ρ+ or ρ−) obtained by RAL.
The conceived system additionally makes use of the prediction certainty

of the classification models. It is defined as the highest posterior classification
probability among all possible labels for sample x. More formally, the certainty of
a model is equal to maxŷ P (ŷ|x) with ŷ being one of all the possible labels for x.

The underlying assumption for designing RAL is based on the rationale that
the model’s uncertainty is an appropriate proxy for assessing the usefulness of a
data point. Indeed, if the learner is uncertain about its prediction, this sample
likely represents a region which has not been explored enough. Adding that
sample with its true label to the training set would improve the overall prediction
accuracy; the alternative is that the uncertainty is due to noise or to concept drift,
these two points being especially challenging in a streaming setting. In RAL, we
combine the aforementioned reward mechanism with the model’s uncertainty to
tune the sample-informativeness heuristic to better guide the query decisions.

Additionally, we implement an ε-greedy policy (also inspired by the bandit
literature [14]) for the sake of data-space exploration: with probability ε, the
system queries the oracle, even if the committee agreed not to query; we call this
the ε-scenario. This ensures that we have a good chance of detecting potential
concept drifts: without this policy, the system could end up being too confident
about its predictions (and thus never ask the oracle again) even though its
estimations are erroneous.

In the next two sections, we provide details about the single-classifier and the
committee versions of RAL. We first devise the committee version, of which the
single-classifier alternative is a simple adaptation.

3.1 Learning with a Committee of Learners

The algorithm behind RAL is summarized in Algorithm 1. Our approach is
inspired by contextual bandits [1]. We rely on a set of experts (i.e. different
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Algorithm 1 RAL algorithm.

1: procedure RAL(x, E, α, θ, ε, η)
2: x: sample to consider
3: E: set of learners, members of the committee
4: α: vector of decision powers of learners in E
5: θ: certainty/querying threshold
6: ε: threshold for ε-greedy
7: η: learning rate for updating decision powers and the querying threshold
8: decisions← {} . will contain decisions of learners
9: for e ∈ E do

10: decisions[e] ← e.askCertainty(x) < θ . decisions[e] ∈ {0, 1}
11: committeeDecision ← round

(∑
e∈E α[e] · decisions[e]

)

12: p← U[0,1] . random number drawn from a uniform distribution
13: if p < ε or committeeDecision = 1 then . ε-scenario or not?
14: y ← acquireLabel(x)

15: if committeeDecision = 1 then
16: r ← getReward(x, y)
17: α ← updateDecisionPowers(r, E, decisions, committeeDecision, α, η)

18: θ ← min
{
θ
(

1 + η ×
(

1− 2
r
ρ−
))

, 1
}

19:
20: function updateDecisionPowers(r, E, decisions, committeeDecision, α, η)
21: for e ∈ E do
22: if decisions[e] = committeeDecision then
23: α[e] ← α[e]× exp(η × r) . EXP4

24: α← α/
∑

e∈E α[e] . normalize each value of α
25: return α
26:
27: function getReward(x, y)
28: return (ρ− if ŷ(x) = y else ρ+)

machine-learning models), referred to as a committee. Each expert gives its
advice for the sample to consider: should the system ask the oracle for feedback
or is the expert confident enough about its prediction? To assess a model’s
prediction certainty, we rely on a certainty threshold θ: if the model’s certainty
is below θ, the model is too uncertain about the prediction to make and thus it
advises that RAL asks the ground truth. The query decision of the committee
takes into account the opinions of the experts, but also their decision power: if
the weighted majority of the experts votes for not querying, RAL will rely on
the label prediction provided by the committee, used in the form of a voting
classifier. The decision power of each expert gets updated such that the experts
which agree with the entire committee are obtaining more power in case that
particular decision is rewarding, i.e. informative (otherwise, these experts get
penalized). These weights are updated through the EXP4 rule [1], with a learning
rate η. RAL does not update the decision powers of the different learners in
the ε-scenario: the committee did not take the querying decision and thus the
weights of the models should not be impacted by this querying action.
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The computation of the reward is carried out every time the committee
decided to query (i.e. not in the ε-scenario). RAL therefore gets rewarded with
ρ+ when it queried the oracle and asking was rewarding (i.e. the voting classifier
would have predicted the wrong label). Conversely, RAL is penalized with ρ− if
the system used the oracle because the committee decided to do so, even though
the underlying classifier would have predicted the correct class.

As an additional step, to ensure that RAL adapts as best as possible to the
data stream, we do not only tune the weights of the committee members based
on rewards, but also the uncertainty threshold θ, denoted in the remainder of
this section as θn to stress that it is influenced by the n− 1 samples observed so
far. Again, as for the decision powers, θn is not updated in the ε-scenario.

The update rule of θn we implemented for our tool is written as follows:

θn ← min
{
θn−1 ×

(
1 + η ×

(
1− 2

rn
ρ−
))

, 1
}

(1)

Design of update rule. In this subsection, we detail the reasoning behind our
choice of the update policy. We are looking for a rule of this form:

θn ← min {θn−1 (1 + f(rn)) , 1} , (2)

where f(rn) = 1− exp (a× rn). The design goals of this update policy are that
the threshold increases slightly when the reward is positive, conversely when the
reward is negative. Our update policy should satisfy the following properties:

1. θn should decrease rapidly in case rn is negative, as this indicates that
the system queries too often and thus is performing poorly. Therefore, θn
should be adapted fast to improve its performance.

2. θn should slightly increase when rn is positive, so that the system does
not keep decreasing the threshold. The model was right to ask for more
samples, and thus the threshold should be increased. Nevertheless, the system
is doing well: the threshold should not be too reactive to the queries.

3. f must have two extrema: a minimum at ρ− < 0 and a maximum at
ρ+ > 0.

4. θn represents a probability. θn = 0 is not acceptable due to the product
form of the update policy, thus the values of θn must be in the interval (0, 1].

5. f(rn) must be in the interval (−1, 1] to ensure that θn takes values
corresponding to a probability. We exclude −1 from the allowed range of
values to avoid that θn drops to 0.

The Properties 1 and 2 lead us to choose the family of functions fa : r 7→
1− exp (a× r) parameterized by a. Property 5 can be translated into an equation
to determine this parameter:

lim
r→ρ−

f(r) = 1− exp
(
a× ρ−

)
= −1 (3)

After solving Equation 3, we get a = ln 2
ρ− . As f is strictly increasing, and because

a is nonpositive, f will have a maximum when rn = ρ+. To satisfy Property 5,
ρ+ must be chosen such that f(ρ+) ≤ 1.

RAL - Reinforced stream-based Active Learning

37



RAL – Reinforced stream-based Active Learning 7

As a final step, we introduce an additional hyperparameter to the update
rule, namely the learning rate η. This rate aims at smoothing the evolution of
the threshold θn, i.e. avoiding that θn changes too dramatically with a single
query. We thus have the following update rule:

θn ← min
{
θn−1

(
1 + η ×

(
1− 2

rn
ρ−
))

, 1
}

(4)

The values of η are restricted to the range (0, 1). Indeed, we still must satisfy
Property 5 (a value of 1 would violate this one) and η = 0 would lead to an
nonreactive system, as the threshold would never adapt. Note that this version of
RAL uses the same value of η for updating both θn and the decision powers in α.

Choice of hyperparameters. We acknowledge that RAL includes a non-
negligible number of hyperparameters which should be well chosen in order to
obtain the best results. While we do not have any rule of thumb on how to define
exact values, the following guidelines help RAL learn from the streaming data:

– the initial value of θ should be high when the number of possible labels is
low, to avoid that the model is always too certain about its prediction for
the encountered samples

– ε should be higher when dealing with more dynamic datasets, to increase the
probability to accurately grasp concept drifts; in general, we would advise
using values in the range of 1 to 5%

– η should be small to avoid changing the decision powers of the different
learners (α) and θn too abruptly; we would advise values below 0.1

– there is no specific range of values for ρ± which works better than others
and these values should be picked considering the situation in which RAL is
used: if unnecessary queries are a major issue, one should set ρ− such that
its absolute value is much higher than the one of ρ+

3.2 Learning with a Single Classifier

RAL can also be used with a single classifier instead of a committee of learners. In
that case, RAL becomes very lightweight and the only element of the system that
allows it to efficiently adapt to and learn from the data stream is the variation of
the uncertainty threshold θ by relying on the rewards rn.

4 Expected Reinforcement Reward Analysis

As the main novelty of RAL lies in the introduction of a reinforcement learning
loop to improve querying effectiveness and the data exploration-exploitation
trade-off, we devote this section to the study of the reward properties in RAL.
We rely on concepts from the bandit theory to understand its expected behavior.
In the general case of a multi-class classification problem, under the assumptions
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that ρ+ ± ρ− ≥ 0, we prove the following bounds for RAL, fn (α, γ) being a
nonnegative function described next:

T
(
ρ+ − ρ−

)
[α fn (α, γ)− 1] ≤ E

{
T∑

n=1

rn

}
≤

T
(
ρ+ + ρ−

)
+ T

(
ρ+ − ρ−

)
[(1− α) fn (α, γ) + α] (5)

We show in the experimental results (Section 5) that the cumulative reward
is always positive for a very dynamic dataset, pointing to the good performance
and added benefits of RAL.

4.1 Expected Reward Analysis – Single Classifier

Let us analyze the expected total reward obtained by using RAL, i.e. E
{∑T

n=1 rn

}
,

where T denotes the number of samples in the considered data stream and rn
indicates the reward obtained for the nth sample.

In the following developments, we use these notations:

– ŷn – nth predicted value
– p̂n – certainty of the model for the nth prediction
– ρ± – reward and penalty obtained by RAL respectively; the reward must be

nonnegative and the penalty nonpositive
– VC – VC dimension [13] of the learner
– θn – uncertainty threshold before having observed the nth sample
– errn – error rate of our classifier before having observed the nth sample
– errn – training error of model before having observed the nth sample

The expected total reward writes E
{∑T

n=1 rn

}
=
∑T
n=1 E {rn}.

Based on the classical result of [13], we have the following bound:

fn(α) = errn +

√
1

Nn

[
VC
(

log
2Nn
VC + 1

)
− log

α

4

]
(6)

P (errn ≤ fn(α)) = 1− α (7)

where Nn denotes the training-set size for the underlying classifier at the nth
round and α is a confidence level whose value lies in the interval [0, 1]. We
therefore can write this probabilistic bound as:

P
[
P(ŷn 6= yn) ≤ fn (α)

]
= 1− α (8)

This means that the probability of making a mistake can be written as:

P [ŷn 6= yn] = P [ŷn 6= yn|P(ŷn 6= yn) ≤ fn (α)]× P [P(ŷn 6= yn) ≤ fn (α)] (9)

+ P [ŷn 6= yn|P(ŷn 6= yn) > fn (α)]× P [P(ŷn 6= yn) > fn (α)]

= P [ŷn 6= yn|P(ŷn 6= yn) ≤ fn (α)] (1− α) + P [ŷn 6= yn|P(ŷn 6= yn) > fn (α)] α
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Its upper and lower bounds are thus:

0 + α fn (α) ≤ P [ŷn 6= yn] ≤ (1− α) fn (α) + α× 1 (10)

For the next proofs, we will require bounds on the probability of the certainty
of the model being less than a threshold. Unfortunately, to the best of our
knowledge, no generic result exists for the probability distribution of these
certainties, which leads to very lose bounds:

0 ≤ P [p̂n ≤ θn] ≤ 1 (11)

For the following steps, we rely on classical results in probability theory,
namely the union bound and Fréchet’s inequality. For two probabilistic events A
and B, be they independent or not, the following bounds hold:

P(A ∧B) ≤ P(A) + P(B) (12)

P(A ∧B) ≥ max {0, P(A) + P(B)− 1} (13)

We have that E {rn} =
∑
r∈R r × P(rn = r) with R = {ρ+, ρ−} being the

set of all possible reward values. As RAL does not obtain any reward in the
ε-scenario, it can be ignored. Therefore, we have the following decomposition of
the expectation and a generic upper bound:

E {rn} = ρ+︸︷︷︸
≥0

P [p̂n ≤ θn ∧ ŷn 6= yn]︸ ︷︷ ︸
≤(P[p̂n≤θn]+P[ŷn 6=yn])

+ ρ−︸︷︷︸
≤0

P [p̂n ≤ θn ∧ ŷn = yn]︸ ︷︷ ︸
≥(P[p̂n≤θn]+P[ŷn=yn]−1)

≤ P [p̂n ≤ θn]
(
ρ+ + ρ−

)
+ P [ŷn 6= yn] ρ+ + [1− P [ŷn 6= yn]] ρ− − ρ−

by factoring out the probabilities and using the opposite events

≤ P [p̂n ≤ θn]
(
ρ+ + ρ−

)
+ P [ŷn 6= yn]

(
ρ+ − ρ−

)
(14)

Finally, the upper bound on the expected total reward, under the assumption
that both (ρ+ + ρ−) and (ρ+ − ρ−) are nonnegative, is:

E

{
T∑

n=1

rn

}
≤ T

(
ρ+ + ρ−

)
+ T

(
ρ+ − ρ−

)
[(1− α) fn (α) + α] (15)

If these two assumptions do not hold, a similar bound can still be achieved:

– First, suppose that ρ+ + ρ− ≥ 0 and ρ+ − ρ− ≤ 0. In this case, the only
solution is to have ρ+ = ρ− = 0, thus trivially E{∑T

n=1 rn} = 0
– Second, suppose that, conversely, ρ+ + ρ− ≤ 0 and ρ+ − ρ− ≥ 0. These

assumptions lead to:

E

{
T∑

n=1

rn

}
≤ T

(
ρ+ − ρ−

)
[(1− α) fn (α) + α] (16)

– Third, the case where both ρ+ + ρ− ≤ 0 and ρ+ − ρ− ≤ 0 should not be
studied further, because that would imply that ρ+ ≤ 0, which violates the
defined range of allowed values for ρ+ (in case ρ+ = 0, we must have ρ− = 0)
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As a next step, we derive a lower bound of the expected total reward, with a
very similar reasoning. First, the expected reward can be decomposed as:

E {rn} = ρ+︸︷︷︸
≥0

P [p̂n ≤ θn ∧ ŷn 6= yn]︸ ︷︷ ︸
≥(P[p̂n≤θn]+P[ŷn 6=yn]−1)

+ ρ−︸︷︷︸
≤0

P [p̂n ≤ θn ∧ ŷn = yn]︸ ︷︷ ︸
≤(P[p̂n≤θn]+P[ŷn=yn])

≥ P [p̂n ≤ θn]
(
ρ+ + ρ−

)
+ (P [ŷn 6= yn]− 1)

(
ρ+ − ρ−

)

by factoring out the probabilities and using the opposite events

(17)

Eventually, if ρ+ + ρ− ≥ 0 and ρ+ − ρ− ≥ 0, the expected total reward is at
least T (ρ+ − ρ−) [α fn (α)− 1]. Conversely, if ρ+ + ρ− ≤ 0 and ρ+− ρ− ≥ 0, the
lower bound is T (ρ+ − ρ−) [α fn (α)− 2].

4.2 Generalization to the multi-class case

The VC dimension makes no more sense when the classification problem includes
multiple classes. There have been several generalizations thereof, for instance the
covering number N (p)(γ/4, ∆γG, 2Nn) [4], where ∆γG is the set of classification
margins obtained by any classifier of the family G in the known Nn data points
(if a margin is larger than γ, it is clipped to γ). errγ,n is the number of misclas-
sifications, where an element is misclassified if its margin is less than γ. With
a margin γ ∈ R+

0 , a real number Γ ∈ R+
0 (γ ≤ Γ ), and the previously defined

notations, the following bound on the generalization error holds:

fn (α, γ) = errγ,n +
1

Nn
+

√
2

Nn

[
log
(

2N (p)
(γ

4
, ∆γG, 2Nn

))
− log

2Γ

αγ

]
(18)

P (errn ≤ fn (α, γ)) = 1− α (19)

Notation is taken directly as defined in [4].
The upper bound of the expected total reward can be computed as in the

binary-classification problem:

E

{
T∑

n=1

rn

}
≤ T

(
ρ+ + ρ−

)
+ T

(
ρ+ − ρ−

)
[(1− α) fn (α, γ) + α] (20)

Similarly, the lower bound for a multi-class problem can be expressed as:

E

{
T∑

n=1

rn

}
≥ T

(
ρ+ − ρ−

)
[α fn (α, γ)− 1] (21)

4.3 Committee version

The mathematical developments for the committee version are very similar to
the single classifier ones. First of all, the committee is still a classifier, and thus
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the same kind of bound applies on the probability of misclassifying. The only
difference is that we have to take the VC dimension of the stacked classifiers
instead of the one of the single classifier.

RAL asks the oracle for a label (and obtains the corresponding reward) if the
weighted average of the decisions encourages it to query. We denote by di,n the
random variable indicating whether the ith classifier decides to query the oracle
or not, i.e. whether its certainty p̂i,n for the nth prediction is below the threshold
θn (in case of querying, di,n = 1; otherwise, di,n = 0). αi,n is the weight of the
ith classifier for the nth sample; we have previously imposed that the sum of the
weights must be one (

∑C
i=1 αi,n = 1 for each sample n). Thus, RAL asks when:

C∑

i=1

αi,n di,n ≥
1

2
(22)

For the upper bound, the previous developments still hold:

E {rn} ≤ P

[
C∑

i=1

αi,n di,n ≥
1

2

]
(
ρ+ + ρ−

)
+ P [ŷn 6= yn]

(
ρ+ − ρ−

)
(23)

Again, to the best of our knowledge, no generic result exists for a probability
distribution of the querying decisions; we therefore have to resort to a very broad
bound:

0 ≤ P

[
C∑

i=1

αi,n di,n ≥
1

2

]
≤ 1. (24)

Finally, the expected total reward is, if ρ+ + ρ− ≥ 0 and ρ+ − ρ− ≥ 0, at most:

E

{
T∑

n=1

rn

}
≤ T

(
ρ+ + ρ−

)
+ T

(
ρ+ − ρ−

)
[(1− α) fn (α, γ) + α] (25)

Similarly, concerning the lower bound, we obtain, for the same reasons, the
same lower bound as in the single classifier case. Specifically, if ρ+ ± ρ− ≥ 0,

E

{
T∑

n=1

rn

}
≥ T

(
ρ+ − ρ−

)
[αfn (α, γ)− 1] (26)

4.4 Summary

This theoretical analysis of RAL yields bounds on the expected total reward
which could be tightened by stronger results on the probability distribution of
p̂n. Nevertheless, our results show that the expected total reward is significantly
higher than Tρ−, whatever the values of ρ±: RAL usually takes the appropriate
decision, and thus mostly queries when necessary. Conversely, the upper bound
is always nonnegative.
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Fig. 2. RAL hyperparameters, se-
lected by grid search.
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Fig. 3. Concept-drift detection in MAWI.
Changes are marked with dashed lines.

It is more beneficial to choose the rewards such that ρ+ + ρ− ≥ 0. Indeed, in
this case, the upper bound is higher (we add a term T (ρ+ + ρ−) to the initial
bound) as well as the lower bound (this time, we add a term T (ρ+ − ρ−)). This
means that, for a promising behavior of RAL, good decisions should be more
rewarded than bad ones are penalized.

By studying special cases of these formulae, we can obtain significant insight
into their properties. For instance, if the prediction algorithm is very inaccurate
(a situation that is expected for the first samples of the stream) and almost
constantly infers the wrong class, i.e. if αfn (α, γ) is close to 1 (equal to 1− ζ),
the lower bound becomes T (ρ+ − ρ−) ζ. This means that the expected total
reward, in this case, is at least zero. This result is significantly stronger than the
trivial bound Tρ−: RAL’s decisions generate a positive total reward, on average.

5 Evaluation

To showcase the performance of RAL, we evaluate our tool and compare it to
a state-of-the-art algorithm for stream-based active learning, and to random
sampling (RS). In particular, we compare RAL to the Randomized Variable
Uncertainty (RVU) technique proposed in [16,17] and mentioned in Section 2, as
this approach also heavily relies on the uncertainty of the underlying machine-
learning model to take the querying decisions. We use three datasets for the
sake of generalization, namely two datasets extracted from MAWILab [3] and a
subset of the widely used Forest Covertype data4. The covertype dataset contains
samples labeled with forest cover type represented by cartographic variables. The
dataset provided by MAWILab is publicly available and consists of 15-minute-
network-traffic traces captured every day on a backbone link between Japan and
the US since 2001 in a stream-based fashion. Traces are annotated with the attack
types observed during their corresponding measurement period. In this work, we
focus on two attack detections, namely the flood and the UDP-netscan attacks.
The MAWI data is subject to concept drifts. We relied on a commonly used
statistical test, namely, the Page-Hinkley test [8], for the detection of changes.
Figure 3 depicts the cumulative number of drifts observed in the dataset. The
test detects 14 abrupt changes during the total measurement time span.

4 https://archive.ics.uci.edu/ml/datasets/Covertype, accessed in April 2019
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(a) Flood attack. (b) Netscan. (c) Wood covertype.

Fig. 4. Prediction-accuracy evaluation for RAL, RVU, and RS. For each of the tested
datasets, RAL outperforms both techniques.

(a) Flood attack (RAL). (b) Netscan (RAL). (c) Wood covertype (RAL).

(d) Flood attack (RVU). (e) Netscan (RVU). (f) Wood covertype (RVU).

Fig. 5. Number of queries issued by RAL and RVU. RAL asks for significantly fewer
samples to reach a better accuracy than RVU.

5.1 Setup

For each benchmarked algorithm, we proceed as follows: first, we subdivide the
considered datasets into three consecutive, disjoint parts, i.e. the initial training
set, the streaming data, and the validation set. The validation set consists of the
last 30% of the dataset, the initial training set is a variable fraction of the first
samples (varying between the first 0.5%, 1%, 2%, 5%, 10%, and 15%), and the
streaming part includes all the remaining samples not belonging to the other two
subsets. We then train a model on the initial training set and check its accuracy
(referred to as the initial accuracy) on the validation part. Next, we run the
benchmarked algorithm on the streaming part and let it pick the samples it
wants to learn from. We retrain the models after each queried label. Finally, we
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evaluate the final model (i.e. trained on the initial training set and the chosen
samples) again on the validation set and report this model’s prediction accuracy
(referred to as the final accuracy). In the context of this evaluation, we implement
for both RAL and RVU the budget mechanism presented in [16], based on the
ratio between the number of queries and the total number of samples observed
so far; the system is allowed to issue queries to the oracle as long as this ratio is
below a certain threshold, i.e. the budget. For random sampling, we use a budget
indicating the exact number of samples to ask feedback for. For each dataset,
we set it to the highest average number of queried samples by either RAL or
RVU among all the tests with all the considered initial-training-set sizes. All
tests are repeated 10 times, and we report both the average accuracy and its
standard error. For RAL, we indicate the average number of queries performed
due to the uncertainty of the underlying model and the ones issued through the
ε-greedy mechanism. For RVU, we also report the average number of queries.
The hyperparameter values of RAL are chosen by grid search for our datasets on
the training set within the ranges prescribed in Section 3. The used values are
indicated in Figure 2. For RAL and RVU, the budget is set to 0.05 for all the
experiments and we test RVU with the hyperparameters recommended in [17].

5.2 Results

The results are shown in Figures 4 and 5. The reported all-streaming accuracy
refers to the accuracy obtained by the model in case it queries all the samples
seen in the stream.

For the evaluations based on the two MAWI datasets, we use the committee
version of RAL. More precisely, the committee is a voting classifier composed
of a k -NN model with k equal to 5, a decision tree, and a random forest with
10 trees. We also use the same model for RVU and RS. On Figures 4(a) and
(b), we can clearly note that RAL outperforms both RVU and RS on average. A
striking example are the results for the netscan detection, where RAL obtains
final accuracies which are 5 percent points higher than the ones of RVU and RS
for the two smallest initial-training-set sizes. It is also worth highlighting that
RAL is the only algorithm yielding higher final accuracies than the all-streaming
one as long as the initial training set contains less than 5% of the data. To our
surprise, RVU is often outperformed by RS. Finally, the flood-attack-detection
analysis shows that the three approaches often yield a final accuracy higher than
the all-streaming one, underlining that learning from the entire data stream does
not necessarily output the best possible accuracy. When it comes to the number
of queried samples, we see that RAL queries on average significantly less often
than RVU, and a non-negligible part of these queries are due to the model’s
uncertainty, suggesting that the samples picked by RAL for its learning purposes
are wisely chosen.

For the evaluation on the Forest Covertype dataset, we rely on the single-
classifier version of RAL, using a 10-tree random forest. As for MAWI, RVU
and RS use the same model as RAL. Again, RAL yields better final accuracies
than both RVU and RS, even though this prediction task is very challenging.
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Fig. 6. Proportion of obtained rewards vs.
obtained penalties by RAL – wood cover-
type dataset.

Fig. 7. Evolution of RAL’s uncertainty
threshold w.r.t. rewards – wood covertype
dataset. Red lines indicate penalties.

Moreover, in this study, RVU performs at most as well as RS, but generally worse,
showing that the decision-making algorithm of RVU is not always appropriate for
complex tasks. Next, we analyze the ratio between the rewards obtained by RAL
versus its penalties, i.e. we check whether querying the oracle when uncertain is
necessary. Figure 6 shows the outcome of this analysis and it is very encouraging.
Indeed, for each test case, the fraction of useful queries is at least 60%. Lastly, we
analyze the reactivity of RAL’s certainty threshold θ with respect to the obtained
rewards and penalties. Figure 7 depicts the evolution of θ with respect to the
rewards while RAL is processing the data stream. θ reacts swiftly to penalties,
i.e. its value decreases rapidly once RAL gets penalized and, very often, the
next query is useful (reward equal to ρ+), underlining the fact that updating the
threshold based on rewards is very relevant.

Note that the initial accuracy is constant for the two different MAWILAB
datasets. This is due to the fact that the first 15% of these datasets consist of
points with the same label (more precisely, they represent an attack). The first
parts of the woodcover dataset are much more dynamic.

6 Conclusions

We have introduced RAL, a novel Reinforced stream-based Active-Learning ap-
proach, to tackle challenges of stream-based active learning, i.e. selecting the most
valuable sequentially incoming samples, using reinforcement-learning principles.
It does not only learn from the data stream, but also from the relevance of its
querying decisions. RAL provides a completely different exploration-exploitation
trade-off than existing algorithms, as it queries fewer samples of higher relevance.
The theoretical analysis underlines the encouraging behavior of RAL. We showed
on several datasets that RAL provides promising results, outperforming the state
of the art. We make RAL publicly available as an open-source Python package.
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Abstract Many real-world problems belong to the area of continuous
black-box optimization. If the black-box function is also cost-aware,
regression surrogate models are often utilized by optimization algorithms
to save evaluations of the original cost-aware function. Choosing a suitable
surrogate model or a suitable setting of its hyperparameters is a complex
selection problem, where research into reusing knowledge represented
by features of black-box function landscape is only starting. In this
paper, we report the research into surrogate model selection, where
knowledge from the previous experience with using the model is utilized
to design a metalearing system. As a proof of concept, we provide a study
investigating the influence of landscape features on the performance of
various Gaussian process covariance functions as surrogate models for
the state-of-the-art optimization algorithm in the cost-aware continuous
black-box optimization.

Keywords: Benchmarking · Black-box optimization · Gaussian process · Land-
scape analysis

1 Introduction

Surrogate modeling is a technique for saving expensive evaluations of a black-box
objective function during the run of an optimization algorithm. Given a set
of observations, a surrogate model can be fitted to approximate the landscape
of the objective function. However, which surrogate model should be chosen
given a particular optimization task? Generally, no surrogate model improves the
algorithm always better than all other surrogate model approaches (cf. [14,28]).
The performance of each surrogate-assisted algorithm obviously depends on the
properties of the data; therefore, investigation of the suitability of different models
and their settings for different combinations of the data properties is very much
needed.

c© 2019 for this paper by its authors. Use permitted under CC BY 4.0.
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Surrogate model selection can utilize the experience from the application
of the considered models to other optimization tasks, a strategy known as
metalearing [19]. Considering the surrogate model selection problem, it is necessary
to extract information about the approximated function, which can be later
utilized by a learning system to make a decision about the convenience of
particular surrogate models. Therefore, features characterizing properties of the
landscape of the objective function should help to better distinguish the model
suitability.

In recent years, many features aiming to describe the properties of objective
function landscapes have been proposed (cf. the overview in [16]). However, a
majority of landscape features was utilized only for the selection of optimization
algorithms and algorithm settings (a. k. a. Algorithm Selection or Algorithm
Configuration problems [33]), not for the selection of surrogate models and their
settings. The discussion in [14] suggests that landscape features can be used to
this end, too. However, only little research in that direction is known so far.

In this paper, we report a research into designing a metalearing system for
surrogate model selection according to past experience. We study relations be-
tween the performance of surrogate models and considered properties of objective
function landscapes. As a proof of concept, we utilize results of the investigation
in [29], where the influence of Gaussian process (GP) covariance function settings
on the error of GP predictions with respect to the original fitness has been studied
in connection with landscape features. We employ a classification tree showing
the dependence of the most suitable covariance function on landscape features to
adaptively select the most promissing covariance for the GP surrogate model in
the surrogate variant of the state-of-the-art black-box optimization algorithm
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [10], the Doubly
Trained Surrogate CMA-ES (DTS-CMA-ES). We evaluate the resulting algorithm
performing automatical covariance function selection on the noiseless part of the
COCO framework [11,12] and compare it to five DTS-CMA-ES versions without
online covariance function selection.

The next section provides a brief introduction to surrogate modeling and
landscape analysis. Section 3 states the proposed research problem and our
approach to adress it. Section 4 presents a proof of concept of the proposed
approach and its experimental results. The last section discusses the results and
suggests directions for future research.

2 Background

2.1 Surrogate Modeling

Replacing an expensive function f with a trained regression model has been used
to speed-up black-box optimization for many years. Such regression model, a. k. a.
surrogate model, is trained on the already available input–output value pairs
(xi, yi), i = 1, . . . , N , where xk is a point in a search space and yk = f(xk) is an
objective function value of xk for k = 1, . . . , N . The model is used instead
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of the original expensive objective function to evaluate some of the points
needed by the optimization algorithm. The response-surface models [26] are
low-degree polynomial models and were used as the historically first models in
costly continuous optimization [1,15]. Since then, other models like multi-layer
perceptron- and RBF-networks [34], support vector machine regression [20],
random forests [2] or Gaussian processes [2,5,27,35] were also used in black-box
optimization.

Simpler models like polynomials are cheap to train; they are thus suitable for
the applications where additional computational resources imposed by the model
building would constitute a substantial part of the overall optimization cost. On
the other hand, random forests and Gaussian processes provide estimation of the
prediction uncertainty which can be used in selecting points for evaluation either
with the expensive original function, or with the model fitness function [3,27].

2.2 Landscape Analysis

Landscape analysis aims at characterizing the landscape of an investigated
function and deriving rules how those characteristics influence the performance of
the optimization algorithm. The final goal is to formulate rules for the selection of
suitable algorithms for an unknown problem according to the calculated features;
this corresponds to the Algorithm Selection problem formulated in [33].

A large number of various landscape analysis techniques have been proposed in
recent years. The following measures quantifying the characteristics of landscapes
were formulated in [23]: multi-modality, global structure, separability, variable
scaling, search space homogeneity, basin size homogeneity, plateaus, and local to
global optima contrast. However, the majority of these high-level properties have
the disadvantages of expert knowledge necessity, categorical character, missing
important information, and requiring knowledge about the whole problem [16].

Exploratory Landscape Analysis [22] is an umbrella term for all such methods,
even though originally developed for combinatorial optimization problems [25]. An
important step in the development of landscape analysis was a proposal of six low-
level easy to compute feature classes [22], each containing a number of individual
features. Generally in continuous black-box optimization field, such feature is a
function ϕ :

⋃
N∈N RN,D×RN,1 7→ R which aims to describe landscape properties

utilizing a dataset of N pairs of observations
{

(xi, yi) ∈ RD × R | i = 1, . . . , N
}
.

Proposed feature classes represent measures related to the distribution of the
objective function values (y-Distribution), the relative position of each value with
respect to quantiles (Levelset), the information extracted from linear or quadratic
regression models fitted to the sampled data (Meta-Model), and three feature
classes requiring additional objective function evaluations – the level of convexity
(Convexity), gradient and Hessian approximation statistics (Curvature), and
features related to local searches conducted from sampled points (Local Search).
It was shown [22] that these low-level features relate well the above mentioned
high-level properties.

The cell-mapping approach [18] discretizes the input space to a user-defined
number of blocks (i. e., cells) per dimension. Afterwards, the corresponding
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features are based on the relations between the cells and points within. Three cell-
mapping feature classes were defined: features extracting information based on the
location of the best and worst observation within a cell w.r.t. the corresponding
cell center, aggregated cell-wise information on the gradients between each
point of a cell and its corresponding nearest neighbor, and estimated convexity
of representative observations from three successive cells in each dimension.
Additionally, the Generalized Cell Mapping features are based on estimated
transition probabilities of moving from one cell to one of its neighboring cells.
Using those probabilities, the barrier tree [7] can be constructed to represent
the local optima by tree leaves and landscape ridges by the branching nodes. It
should be noted that cell-mapping approach is less useful in higher dimensions
where majority of cells is empty and feature computation can require a lot of
time and memory.

Nearest better clustering (NBC) features [17] are based on the detection of
funnel structures. The calculation of such features is based on the comparison of
distances from observations to their nearest neighbors and their nearest better
neighbors, which are the nearest neighbors among the set of all observations with
a better objective value. In [21], the set of dispersion features comparing the
dispersion among the data points and among subsets of these points from the
dataset is proposed. The information content features of a continuous landscape
are derived in Information Content of Fitness Sequences approach [24] as the
adaptation of methods for calculating of the information content of discrete
landscapes. In [16], three feature sets were proposed: the features providing basic
information about the data such as the number of points, boundaries or dimension
(Basic), aggregated information about coefficients of linear models fitted in each
cell, and information obtained from principle component analysis measuring the
proportion of principle components needed to explain a user-defined percentage
of variance. A comprehensive survey of landscape analysis methods can be found,
e. g., in [25].

Research into using landscape features for surrogate modeling selection has
started only recently. In [36], the fitness distance correlation was utilized for
automatic selection between polynomial and RBF models and their settings
as surrogates for a particle swarm optimization algorithm. In [30], we have
investigated relationships between two surrogate models (GP and RF) and a set
of landscape features. In [29], we have proposed the set of landscape features
based on the state variables of the CMA-ES algorithm (CMA features) and
investigated the relationships of GP covariance functions to landscape features.

3 Landscape Analysis for Surrogate Model Selection

3.1 Surrogate Model Selection Problem

The surrogate model selection problem can be formalized as follows: In an
iteration i of a surrogate-assisted algorithm A, a set of surrogate models M
with hyperparameters θ are trained utilizing particular choices of the training
set T . The training set T is selected out of an archive A (T ⊂ A) using some
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training set selection method (TSS). The archive contains all points in which the
fitness f has been evaluated so far A = {(xi, f(xi))| i = 1, . . . , N}. Afterwards,
the surrogate model M ∈M is utilized to evaluate new set of points (population)
P = {xk|k = 1, . . . , α}, where f(xk) can be obtained using the expensive black-
box fitness function and α ∈ N depends on the strategy for the selection of new
points for evaluation by the models fromM. The main question related to this
problem is: How can we select the most convenient models from the setM (and
possibly θ) according to A, T , and P?

3.2 Proposed Methodology

We suggest to use the metalearing approach based on landscape features to tackle
the surrogate model selection problem.

Learning phase: First, a set of datasets D = {A(l), T (l),P(l)}Ll=1, L ∈ N, is
created (ideally via recording the datasets from independent runs of the algorithm
A). Second, for each l, each model M ∈M with hyperparameters θM is trained
on T (l) and its performance is assessed with some error measure ε on P(l).
Third, each dataset from D is characterized using a set of landscape features
Φ. In this way, a mapping SM : Φ →M or Sθ : Φ → ⋃

M∈MΘM from feature
space toM or

⋃
M∈MΘM is learned, where ΘM stands for the set of possible

hyperparameters of the model M .
Application phase: In each iteration i of an algorithm A, the landscape

features Φ are calculated on datasets A(i), T (i),P(i). After that, the mapping S
is used to select the surrogate model M ∈M and its hyperparameters θM ∈ ΘM .
The selected M ∈M is trained on T (i) and then utilized for predicting fitness
values of the elements of P(i).

4 Proof of Concept

4.1 Learning phase

Optimization Algorithm Considering cost-aware black-box single-objective
optimization of continuous functions, the CMA-ES [10] has been many times
successfully improved using surrogate models to save fitness function evaluations
[13,15,20,27]. The DTS-CMA-ES [3,27] has been shown a valuable representative
of such surrogate-assisted versions of the CMA-ES. Therefore, we have utilized
DTS-CMA-ES to play the role of the algorithm A in our concept.

Surrogate Model and Hyperparameters As a surrogate model, the DTS-
CMA-ES uses Gaussian processes [31] due to their ability to estimate the whole
distribution of the fitness function. In the DTS-CMA-ES, the Gaussian process
model setting is fixed during the whole optimization process, so is the GP
covariance function. An essential GP hyperparameter is the type of covariance
function. In [32], we have proposed to select the covariance function for a GP-
based surrogate model for the CMA-ES using a Bayesian approach.
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Mapping The results in [29] suggested that mapping from the space of features
calculated on A, T , and P to the value set of a categorical hyperparameter can
be represented by a classification tree.

Error Measure The CMA-ES state variables are adjusted according to the
ordering of µ best points from the current population. Therefore, the Ranking
Difference Error [3] is a convenient measure of model error for the DTS-CMA-ES

RDEµ(ŷ,y) =
∑
i:(ρ(y))i≤µ |(ρ(y))i − (ρ(ŷ))i|

maxπ∈Permutations of (1,...,λ)
∑
i:π(i)≤µ | i− π(i)| , (1)

where (ρ(y))i is the rank of yi among the components of y.

Dataset To generate a set of datasets D, we have used independent runs of the
DTS-CMA-ES on the 24 noiseless single-objective benchmarks from the COCO
framework [11,12] in dimensions 2, 3, 5, 10, and 20 on instances 11–15. Using each
of the 8 different covariance functions from [29] in each of those independent
runs, data from 25 uniformly selected generations were recorded. The runs of the
algorithm were terminated in cases when the limit of 250 function evaluations
per dimensions was exceeded or when the target fitness value 10−8 was reached.
The details1 of generating the datasets can be found in [29].

Landscape Features The following 6 feature classes were employed to charac-
terize all the sets A, T , and P from the datasets in D: y-Distribution, Levelset,
Meta-Model, NBC, Dispersion, Information Content, and CMA features. In ad-
dition, the dimension D and the number of observations N from the Basic
feature class were also utilized. The rest of features from classes described in
Subsection 2.2 were excluded, mainly due to requiring additional evaluations of
the objective function f.

Classification Tree for Covariance Functions The classification tree T
depicted in Figure 1 has been obtained in [29] and represents the influence of
landscape features on the most suitable covariance function. To train the tree T ,
all the sets described by features in the previous paragraph were divided into
8 classes according to which of the 8 considered GP model settings achieved
the lowest RDEµ. The tree was trained using the MATLAB implementation
of the CART algorithm [4], where all features were considered as continuous
variables. The fully-grown tree was pruned to depth 8 resulting in the shown
tree T . The set of training points and the respective population is denoted
TP = T ∪ {(x, ◦)| ∀x ∈ P}, where ◦ indicates the unknown fitness value of a
point from the current population P.

1 Source code covering all mentioned experiments is available on http://uivty.cs.cas.
cz/~cma/ecml2019/source.zip
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Figure 1: Classification tree T selecting the most suitable covariance function
based on landscape features [29]. In each iteration of the DTS-CMA-ES, the
landscape features in the splitting nodes are calculated on sets in brackets, i. e.,
archive of points evaluated so far A, GP model training set T , and the set
of training points and current population TP = T ∪ {(x, ◦)| ∀x ∈ P}, where ◦
indicates an unknown fitness value of a point from the current population P . The
covariance function is determined by the leaf reached by the sequence of splitting
nodes decisions. The features used for node splits are explained in the text of
Subsection 4.1. Covariances in leaves are listed in Table 1.
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Figure 2: Median (solid lines) and 1st/3rd quartiles (dash-dot lines) of RDEµ
values dependency on ϕL(A) for all tested covariances calculated on all available
datasets.

The features employed in the tree T represent various landscape properties:
D is the dimension of the investigated function; ϕL is the log-likelihood of the set
of points X with respect to the CMA-ES sampling distribution [29] (see Figure 2
for the average RDEµ dependency on ϕL(A)2); ϕR(mean) and ϕR(med) denote two
ratios of the mean and median distances of the ’best’ objectives vs. ’all’ objectives
[21]; ϕLs, ϕQs, and ϕQi represent the adjusted R2 (i. e., the model fit) of linear,
quadratic simple, and quadratic with interactions fitted regression models [22];
ϕQDA is the mean missclassification error of Quadratic Discriminant Analysis on
points divided into two classes according to the fitness values with median as a
threshold [22]; ϕε denotes the argument of the maximum information content of
the fitness sequence [24].

The covariance functions located in leaves of the tree T are listed in Table 1.

2 Figures of the RDEµ dependencies on the remaining features can be found on an
authors’ webpage: http://uivty.cs.cas.cz/~cma/ecml2019/.
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Table 1: Considered GP covariance functions. Notation: d – metric measuring
the distance d(xp,xq), hyperparameters σ0 – scalar multiplication factor, σ2

f –
signal variance, ` – characteristic lenght-scale (spatially varying in the Gibbs [9]
covariance, where `(x) is an arbitrary positive function of x), and α > 0.
name kernel

linear (LIN) KLIN(xp,xq) = σ2
0 + x>p xq

squared-exponential (SE) KSE(d;σf , `) = σ2
f exp

(
− d2

2`2

)

rational quadratic (RQ) KRQ(d;σf , `) = σ2
f

(
1 + d2

2`2α

)−α

Matérn 5
2 [31] (Mat) K

5
2
Mat(d;σf , `) = σ2

f

(
1 +

√
5d
`

+ 5d2

3`2

)
exp
(
−
√

5d
`

)

Gibbs [9] KGibbs(xp,xq)=σ2
f

(
2`(xp)`(xq)
`(xp)2+`(xq)2

)D/2
exp
(
− (xp−xq)>(xp−xq)

`(xp)2+`(xq)2

)

Algorithm 1 Covariance function selection in DTS-CMA-ES model training
Input: A (archive), P (population), Nmax (maximum training set size), TSS (training

set selection method), r (maximal radius of selected points), µ (GP mean function),
σ (CMA-ES step-size), C (CMA-ES covariance function)

1: {(xk, yk)}Nmax
k=1 ← select max. Nmax points from A using TSS and r

2: xk ← transform xk into the (σ)2C basis k = 1, . . . , Nmax
3: yk ← normalize yk to zero mean and unit variance k = 1, . . . , Nmax
4: K← T (A, T = {(xk, yk)}Nmax

k=1 ,P)
5: θ← fit the hyperparameters of (µ,K) by likelihood maximization

Output: M – trained GP model with hyperparameters θ

4.2 Application phase

Covariance Function Selection The implementation of the selection of the
covariance function for the DTS-CMA-ES based on the classification tree T is
quite straightforward. We have modified the original algorithm only in the GP
model training method (see Algorithm 1). We have incorporated an additional
step applying covariance function selection using the classification tree T between
the training set transformation and fitting the GP hyperparameters θ.

Covariance selection validation setup We have compared the described
adaptive DTS-CMA-ES that online chooses the covariance function using the
tree T (denoted as T-DTS) with five DTS-CMA-ES versions that use solely one
covariance from Table 1. The comparison was performed on the noiseless part
of the COCO framework using instances 1–5 and 81–90 of all 24 benchmark
functions in dimensions 2, 3, 5, 10, and 20. Each of the six DTS-CMA-ES
versions had a budget of 250D fitness function evaluations to reach the target
value 10−8 from the function optimum. Except the choice of the covariance
function, the DTS-CMA-ES was tested in its non-adaptive version using the
overall best settings from [3].
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4.3 Results

Results from the comparison of six DTS-CMA-ES versions are depicted in
Table 2 and Figures 3 and 4. The graphs in Figures 3 and 4 show the dependence
of the scaled best-achieved logarithms ∆log

f of median distances ∆med
f to the

optimal fitness value on the number of cost-aware fitness evaluations divided
by the dimension. Medians ∆med

f , 1st, and 3rd quartiles are calculated from 15
independent instances for each respective algorithm, function, and dimension.
The scaled logarithms of ∆med

f are calculated as

∆log
f =

log∆med
f −∆MIN

f

∆MAX
f −∆MIN

f

log10
(
1/10−8)+ log10 10−8 , (2)

where ∆MIN
f (∆MAX

f ) is the minimal (maximal) distance log∆med
f found among

all the compared algorithms for the particular function f and dimension D
between 0 and 250 function evaluations per D. The resulting values are scaled to
interval [−8, 0], where −8 corresponds to ∆MIN

f and 0 to ∆MAX
f . More detailed

results can be found on an authors’ webpage3.
We have tested the statistical significance of performance differences on 24

COCO functions in 5D using the Iman and Davenport’s improvement of the
Friedman test [6]. The test was conducted separately for two function evaluation
budgets. Let #FET be the smallest number of function evaluations at which
at least one DTS-CMA-ES version reached the precision ∆med

f ≤ 10−8, or
#FET = 250D if no version reached the precision within 250D evaluations.
The DTS-CMA-ES versions are ranked on each COCO function with respect to
∆med
f at a given budget of function evaluations. The null hypothesis of equal

performance of all versions is rejected for the higher function evaluation budget
#FEs = #FET, as well as for the lower budget #FEs = #FET

4 (in both cases,
p < 10−3).

We test pairwise differences in the performance using the post-hoc Friedman
test [8] with the Bergmann-Hommel correction controlling the family-wise error.
The numbers of functions at which one DTS-CMA-ES version achieved a higher
rank than the other are enlisted in Table 2. The table also contains the pairwise
statistical significances.

From the results in Table 2 and in Figures 3 and 4, we can consider the results
of the T-DTS, and the DTS-CMA-ES with SE, Mat, and RQ covariances being
statistically equivalent meaning that neither of them is significantly better than
the other one. Looking on the detailed results on the authors’ webpage3, those
covariances provided the best performance on the functions f5, f8−11, and f14.
On the other hand, slightly worse results can be observed on functions f7, f13,
f16, and f20. On functions f6 and f17,18 the T-DTS results more or less follow SE,
Mat, and RQ performance although the best performance was provided by the
Gibbs covariance. The results on multimodal functions f22−24 show increasing
T-DTS performance with growing dimension. The versions using LIN and Gibbs
3 http://uivty.cs.cas.cz/~cma/ecml2019/
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Table 2: A pairwise comparison of the algorithms in 5D over the COCO for
different evaluation budgets. The number of wins of the i-th algorithm against the
j-th algorithm over all benchmark functions is given in i-th row and j-th column.
The asterisk marks the row algorithm being significantly better than the column
algorithm according to the Friedman post-hoc test with the Bergmann-Hommel
correction at the family-wise significance level α = 0.05.
5D T-DTS LIN SE Matérn RQ Gibbs
#FEs⁄#FET

1⁄4 1 1⁄4 1 1⁄4 1 1⁄4 1 1⁄4 1 1⁄4 1

T-DTS — — 22.5∗ 24∗ 10.5 12 11.5 12 12.5 11 17.5 22.5∗
LIN 1.5 0 — — 0.5 0 0.5 0 0.5 0 0.5 0
SE 13.5 12 23.5∗ 24∗ — — 10.5 11.5 13.5 9.5 15.5 20∗
Matérn 12.5 12 23.5∗ 24∗ 13.5 12.5 — — 10.5 10.5 16.5 23.5∗
RQ 11.5 13 23.5∗ 24∗ 10.5 14.5 13.5 13.5 — — 14.5 22∗
Gibbs 6.5 1.5 23.5∗ 24 8.5 4 7.5 0.5 9.5 2 — —

covariance functions provide considerably lower performance in comparison with
the remainder. Variability of length-scale utilized by Gibbs covariance function
helps the DTS-CMA-ES to converge on hard-to-regress f6 and on multimodal
Schaffer’s functions f17,18 especially in higher dimensions, where the performance
of DTS-CMA-ES using Gibbs covariance in GP model is the best of all compared
versions.

A possible reason of the T-DTS results may lie in an imbalance of the input
dataset for decision tree. Covariances SE, Mat, and RQ performed almost similar
and, in average, provided the overall best prediction performance among tested
covariances on the set of datasets D. Therefore, these three covariances were
marked as best on most of datasets and the remaining two (LIN and Gibbs) were
best on minority of datasets. The trained classification tree was probably not
able to capture such imbalance of the input data and predicted LIN or Gibbs as
the most convenient covariances more often than it was necessary.

5 Conclusion and Future work

This article investigates the surrogate model selection problem for continuous
single-objective black-box optimizers in the context of reusing knowledge through
landscape analysis. The proposed concept was applied to select a hyperparameter
of Gaussian process models, namely the covariance function, and was utilized
during the DTS-CMA-ES run to save costly fitness evaluations. The DTS-CMA-
ES upgraded with hyperparameter selection was compared to five DTS-CMA-ES
versions using different covariances on the set of noiseless benchmarks.

The presented proof of concept has shown that the methodology can be
utilized for hyperparameter selection. The tree-assisted DTS-CMA-ES had a
performance equivalent to DTS-CMA-ES versions with successful fixed covariance
functions. On the other hand, the classification tree as a mapping of values of
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Figure 3: Scaled medians (solid) and 1st/3rd quartiles (dotted) distances ∆log
f

averaged over the groups of noiseless COCO functions in 3D and 5D for different
settings of DTS-CMA-ES GP covariance function.
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Figure 4: Scaled medians (solid) and 1st/3rd quartiles (dotted) distances ∆log
f

averaged over the groups of noiseless COCO functions in 10D and 20D for
different settings of DTS-CMA-ES GP covariance function.
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landscape features to the covariance functions for the DTS-CMA-ES seems not
to have learned very accurately.

Future research should be focused mostly on deeper understanding of the
surrogate model selection problem and the possibilities of landscape analysis
in this context. The investigation of various mappings to models and their
hyperparameters capable to capture relationships between landscape features
and surrogate model performance is definitely needed. Another direction is to
extend the presented research also to other kinds of surrogate models.
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models, which are easier to interpret. Such models can then be analyzed by do-
main experts and are easier to validate. Getting more interpretable models is
also a key concern nowadays and even considered by many as a requirement
when deployed in the medical domain.

Feature selection has been already largely studied. Yet, current methods are
still widely unsatisfactory mainly because of the typical instability they exhibit.
Instability here refers to the fact that the selected features may be drastically
different for similar data, even though the true underlying processes (explaining
the target variable) are essentially constant. Such instability is a key issue as
it reduces the interpretability of the predictive models as well as the trust of
domain experts towards the selected feature subsets. We address this problem
here by designing methods balancing between the classification performance and
the selection stability of the well-known Recursive Feature Elimination (RFE)
algorithm. Our approach allows domain experts to explicitly control the trade-off
and to select Pareto-optimal compromises based on their personal preferences.

In the rest of this section, two distinct stability problems that are tackled in
this paper are introduced.

1.1 The Stability Problems

Single Task Stability (1) Feature selection methods are often inherently un-
stable, i.e. they return highly different feature sets when the training data is
slightly modified. Figure 1a illustrates such an instability. The initial dataset
is perturbed1 to form different datasets. Instability arises when little overlap of
the selected features occurs. This prevents a correct and sound interpretation
of the selected features and strongly impacts their further validation by domain
experts. Unlike optimizing the accuracy of predictive models, optimizing selec-
tion stability may look trivial since an algorithm always returning an arbitrary
but fixed set of features would be stable by design. Yet, such an algorithm is not
expected to select informative and predictive features. This illustrates that opti-
mizing stability is only well-posed jointly with predictive accuracy, and possibly
additional criteria such as minimal model size or sparsity.

Transfer Learning Selection Stability (2) Multi-task feature selection aims at
discovering variables that are relevant for several similar, yet distinct, classi-
fication tasks. Different feature subsets can be returned for each task. In this
paper, we focus on the case where all learning tasks are not directly available.
Information from the tasks arising first can be propagated to subsequent tasks,
via transfer learning. Stability has to be encouraged from the domain expert
point of view as features that are relevant for different data sources are likely to
be particularly interesting to study. The accuracy-stability trade-off on such a
learning problem (represented in Figure 1b) can take two extreme values. With
complete disregard to stability, each feature set could be selected on a given task
1 Here by bootstrapping which is often used to measure such instability, but it could

be any small perturbation.
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independently of the others, with no control on the across task stability. On the
contrary, maximum stability can trivially be reached by returning the feature set
computed for the first task, for all subsequent tasks. However, this is expected to
reduce the accuracy of the models built on these subsequent tasks as previously
learned features might turn out to be less informative for them. This would be
the case if the different tasks are obtained by gradually enriching or correcting
the data as features learned on the error-corrected data are expected to be more
relevant.

(a) Single-task (b) Transfer learning

Fig. 1. Illustration of two stability problems. For both problems, the outcome is
a measure of the trade-off between prediction accuracy and selection stability.
Methods allowing domain experts to control this trade-off are proposed in the
subsequent parts of this paper.

In section 2, feature selection methods and propositions to increase stability
are reviewed. Section 3 introduces a metric to assess the performance of methods
compromising between feature selection stability and classification performance.
Then a biased variant of the RFE algorithm is proposed in section 4. Section 5
demonstrates the ability of this biased RFE to tackle the previously mentioned
stability problems.

2 Related Work
Feature selection techniques are generally split into three categories: filters, wrap-
pers and embedded methods. Filters evaluate the relevance of features indepen-
dently of the final model, most commonly a classifier, and remove low ranked
features. Simple filters (e.g. t-test or ANOVA) are univariate, which is compu-
tationally efficient and tends to produce a relatively stable selection but they
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plainly ignore the possible dependencies between various features. Information
theoretic methods, such as MRMR [7] and many others, are based on mutual
information between features or with the response, but a robust estimation of
these quantities in high dimensional spaces remains difficult. Wrappers look for
the feature subset that will yield the best predictive performance on a validation
set. They are classifier dependent and very often multivariate. However, they
can be very computationally intensive and an optimal feature subset can rarely
be found. Embedded methods select features by determining which features are
more important in the decisions of a predictive model. Prominent examples in-
clude SVM-RFE [10] and logistic regression with a LASSO [24] or Elastic Net
penalty [30]. These methods tend to be more computationally demanding than
filters but they integrate into a single procedure the feature selection and the
estimation of a predictive model. Yet, they also tend to produce much less stable
models.

Some works specifically study the causes of selection instability. Results show
that it is mostly caused by the small sample/feature ratio [2], noise in the data
or imbalanced target variable [5] and feature redundancy [23]. While all of these
reasons clearly play a role, the first one is likely the most important one in a
biomedical domain with typically several thousands, if not millions, of features
for only a few dozens or hundreds of samples. This is likely why stable feature
selection is intrinsically hard in this domain and why existing techniques are still
largely unsatisfactory.

Looking for a stable feature selection also requires a proper way to quantify
stability itself and lots of measures have already been proposed: the Kuncheva
index [15], the Jaccard index [14], the POG [21] and nPOG [26] indices among
others. Under such a profusion of different measures, it becomes difficult to
justify the choice of a particular index and even more to compare results of works
based on different metrics. Furthermore, the large number of available measures
can lead to publication bias (researchers may select the index that makes their
algorithm look the most stable) [6]. In the hope of fixing this issue, a recent
work [17] lists and analyzes 15 different stability measures. They are compared
based on the satisfaction of 5 different properties that a stability measure should
comply. A novel and unifying index has been proposed in this regard. This index,
used throughout this paper, measures the stability across M selected subsets of
features. It can be computed according to equation (1).

φ = 1−
1
d

∑d
f=1 s

2
f

k
d ∗ (1− k

d )
(1)

with s2
f = M

M−1 p̂f (1 − p̂f ) the estimator of the variance of the selection of the
fth feature over the M selected subsets and k the mean number of features se-
lected from the original d features.2 This measure is the only existing measure
satisfying the 5 (good) properties described in [17], namely fully defined, strict
monotonicity, bounds, maximum stability ⇔ deterministic selection and correc-
2 p̂f is the fraction of times feature f has been selected among the M subsets.
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tion for chance. It is formally bounded by −1 and 1 but is asymptotically lower
bounded by 0 as M → ∞. It is also equivalent to the Kuncheva Index (KI)[15]
when the number of selected features k is constant across the M selected subsets
but can be computed in O(M ∗ d) time, whereas KI can only be computed in
O(M2 ∗ d).

Several authors already proposed different methods to increase stability. For
instance, instance-weighting for variance reduction [11] which tends to increase
feature stability while keeping a comparable predictive performance. Ensemble
methods for feature selection have also been proposed [1] and generally increase
feature stability. Nonetheless, the gain in stability offered by existing methods is
still limited and, maybe more importantly, the stability of the selection cannot
be controlled explicitly, which is the main goal of this paper.

Multi-task feature selection has already been largely studied [27]. Encourag-
ing the selection of common predictors across tasks can be done by using the
`1/`p regularization scheme. The cost of selecting different predictors for differ-
ent tasks can be controlled by using different norms `1/`p, as p → ∞ favors
the selection of common features. As with the differential shrinkage approach
proposed here, penalties caused by selecting several times the same feature are
reduced. Notably, the `1/`∞ [16] and `1/`2 [18,19] penalties have been studied
in details. Efficient projected gradient algorithms, for general p, are proposed
and the effect of p on the shared sparsity pattern and the classification perfor-
mance is analyzed [25]. The main goal of [25] is to find adequate feature-sharing
degrees such as to maximize the prediction performance of the models, which is
different from the objective of explicit control of the accuracy-stability trade-off
that is pursued in the present paper. Although this approach has been originally
introduced for standard multi-task feature selection, it can trivially be adapted
to the transfer learning setting [25]. Other similar approaches have also been
proposed [3,4,8] (see [27] for a complete survey).

3 A Multi-Objective Evaluation Framework Through Pareto
Optimality

In this section, we propose to use a classical evaluation framework in multi-
objective optimization to assess the efficiency of methods balancing between
classification performance and selection stability. An (accuracy,stability) pair3

(a1, φ1) dominates another pair (a2, φ2) iff a1 ≥ a2 ∧φ1 ≥ φ2 and at least one of
the inequalities is strict (>). A given method m is able to generate some pairs
Pm in the space of all possible pairs4 P = {(a, φ) : 0 ≤ a, φ ≤ 1}. From the set of
generated pairs Pm, the set of pairs that are not dominated by any other pair,
3 Common alternatives to the classification accuracy, such as specificity/sensitivity or
AUC, can also be used.

4 The careful reader may remember that the stability measure φ formally lies in the
[−1, 1] interval. However, as φ = 0 corresponds to the stability of a uniformly random
selection, we argue that the only interesting part of the stability spectrum is in fact
[0, 1].
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Pam, can be found. This set, called the Pareto set, defines a subspace where
no point dominates any other point. A domain expert would then choose his
favorite pair based on his personal preference towards classification performance
and feature selection stability.

As performance metric, we propose the widely used hypervolume measure
[29], also known as S-metric. This volume represents the space containing the
sets of accuracy-stability pairs that are dominated by at least one point of the
Pareto set Pam. The hypervolume measure has the convenient property that
whenever a Pareto set dominates another, the hypervolume of the former is
greater. As our objective space is bidimensional, the hypervolume measure is
referred to as the Dominance Area (DA) in the rest of this work.

An example of the DA metric can be seen in Figure 2. The blue method
starts from the left with a higher accuracy. It thus gains some area over the
red method. Nonetheless, the red method can reach higher stabilities without
dropping the accuracy as much as the blue one. Overall, the red method has a
larger DA. Note that this DA is also equal to the fraction of the total area that
is dominated by the method, or 1 minus the fraction of area that dominates the
method. Its value thus lies in the [0, 1] interval.

As noticed by [28], this DA measure is biased towards convex, inner parts
of the objective space. [28] tackles this problem by giving different weights to
different portions of the objective space. This weighted DA can be computed via
the weighted integral

DAP =
∫ 1

0

∫ 1

0
w(a, φ)fP (a, φ)dadφ (2)

with w the weighting function and fP the attainment function which is equal
to 1 if (a, φ) is dominated and 0 otherwise. To preserve the [0 − 1] bounds, w
has to be normalized such that its integral over the objective space is 1. For
example, the normalized weighting function wa(a, φ) , eA∗a

eA−1 gives a higher
weight to the portions of the space where the accuracy is high. In the example
of Figure 2, the blue method actually outperforms the red one for A > 2.5.
For the sake of generality, our methods are evaluated with w(a, φ) = 1 but the
proposed evaluation framework allows for more, for instance, if domain experts
are particularly interested in some parts of the objective space.

In order to evaluate the pair (a, φ) ∈ P corresponding, for instance, to a set of
meta-parameters, some data has to be used to learn the features and some data
to evaluate them on independent examples. This can be done via standard cross-
validation or by bootstrapping. Each set of meta-parameters produces different
pairs in P and their average value is reported. Concretely, each point in Figure
2 comes with an uncertainty linked to the sampling of the data. In the following,
we define a confidence interval on the true value of DA based on the derivation
of confidence regions for each Pareto-optimal pair.

Let A be the random variable representing the accuracy value measured on
a given subsampling of the data and Φ be the corresponding stability value.
Let P = (A,Φ) be the multivariate random variable with the accuracy and

Explicit Control of Feature Relevance and Stability

69



Explicit Control of Feature Relevance and Stability 7

Fig. 2. Dominace Area (DA) toy example. The DA metric represents the area
that is dominated by at least one point generated by the method.

stability as dimensions. Let us assume that the evaluation protocol produces B
measurements of P for each Pareto-optimal point5, represented by the vector p.
The Hotelling distribution T 2 is the multivariate counterpart of the Student’s t
distribution, with which we can define confidence (here 2-dimensional) regions.

T 2 = B(p̄− µ(p))′C−1(p̄− µ(p)) ∼ 2(B − 1)
B − 2 ∗ F2,B−2 (3)

with C the sample covariance matrix. It can be shown that T 2 is distributed like
a Fisher distribution F2,B−2. Thus,

P

[
(p̄− µ(p))′C−1(p̄− µ(p) ≤ 2 ∗ (B − 1)

B − 2 ∗ F2,B−2(α)
]

= 1− α (4)

The inequality defines an ellipsoidal region, that is likely to cover µ(p). The
center of the ellipsoid is p̄. The length of the axis and their angle can be found by
computing the eigenvalues and eigenvectors of the sample covariance matrix C.
To compute a confidence interval on the DA, the most dominant and dominated
point of each ellipse are found and used to compute the upper and lower bound
of the confidence interval (see Figure 3c and 3d for concrete examples in our
experiments).

4 A Biased Variant of the RFE Algorithm

In this section, we propose a simple method to balance between the classifica-
tion performance and selection stability of a logistic RFE algorithm. The RFE
5 B could be e.g. the number of bootstrap samples.
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algorithm was originally introduced with a hinge loss. We prefer here the logis-
tic variant for an expected smoother control of the trade-off under study. RFE
iteratively drops the least relevant features until the desired number of features
k is reached. We opt here to drop a fixed fraction (20%) of the features at each
iteration. The loss function that a logistic RFE minimizes for a binary classifi-
cation task is the following, with n the number of samples, xi sample number i
made of d features as dimensions, and yi its label.

L =
n∑

i=1
log(1 + e−yi∗(w∗xi)) + λ||w||2 (5)

The weight vector w contains a weight assigned to each feature. The features are
then ranked based on the absolute value of their weight, which represents the
importance of the feature in the final prediction. The term λ||w||2 of the loss
function is a regularization term, preventing coefficients of the model to take
too high values, which would most likely result in overfitting. In the classical
approach, every feature is regularized by the same amount λ.

We propose to extend equation (5), such that the regularization term be-
comes λβ||w||2. The function of the vector β is to bias the selection towards
certain features via differential shrinkage. A feature f with a small βf is less
regularized and vice-versa. Its selection in the model is less penalized than a fea-
ture with a higher βf . The search is thus biased towards features with small βf .
A similar differential shrinkage has already been applied to the `1-AROM and
`2-AROM methods [12,13] with the objective of biasing the selection towards a
priori relevant features or in a transfer learning context. In the remaining part of
this section, three possible schemes to set the β vector, according to the setting
of interest, are discussed.

Biased RFE for Single Task Feature Selection By varying the distribution of β,
the accuracy-stability trade-off of the biased RFE can be controlled. The biased
RFE is equivalent to a standard RFE when β = 1. Otherwise, the selection is
biased towards features with a small βf . This is expected to increase stability at
the possible cost of some classification performance, as uninformative features
could be prioritized. In this initial approach, we decide to favor some features
non-uniformly at random, following a gamma distribution.

βf ∼ Γ (α, 1)

with α the shape of the gamma distribution, which controls the trade-off. All
βf are post centered such that µ(β) = 1. As α → ∞, the gamma distribution
tends to a Dirac delta, δ(α). All features have then the same weight (equal to
µ(β) = 1) and no bias is put in the selection. As α → 0, the distribution of
β departs from δ(α) which increases the bias. Domains experts can thus play
with the α values and therefore explicitly tune the trade-off between selection
stability and prediction accuracy.
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Using Prior Knowledge The biased RFE can take advantage of available prior
knowledge. If a ranking of the features is known, then the βf can be assigned
such that this ranking is respected. If the prior knowledge is meaningfull, the
selection is no longer biased towards arbitrary features, but towards features
that are high in the ranking, and thus potentially informative. Another type
of prior knowledge could be an unordered set of features that are suspected to
take part in the process of interest. The lowest βf could then systematically be
assigned to those features.

Biased RFE for Transfer Learning We are now interested in the across task
stability that can be obtained via transfer learning. Tasks are thus ranked such
that information from previous tasks can be used in the selection of features for
subsequent tasks.6 In task i, features that have been returned for tasks 0..i− 1
should be prioritized over the rest, such that the feature stability is increased.
Given the definition of stability used here (equation (1)), it is actually possible to
compute the drop/gain in stability that the selection of a feature would cause.
Intuitively, we propose to bias the selection, through a specific choice of the
vector β, towards features that would cause the highest gain/lowest drop in
stability if they were to be selected. Constant terms put aside7, each feature
influences (negatively) the total stability by its variance in the selection s2

f ∝
pf (1− pf ). Feature f is given an attractiveness score scf , expressed in equation
(6).

scf = (N + 1)2

N
∗ (pf,no(1− pf,no)− pf,yes(1− pf,yes)) (6)

with s2
f,no the selection variance of feature f assuming f is not selected in the

current task and s2
f,yes its selection variance if it were to be selected. N is the

number of tasks for which feature sets have already been selected. This score
is thus proportional to the difference of stability between the cases where the
feature is selected for a given task and not. This is illustrated in table 1a where
the current task is T4. For instance, the selection of the feature F2 in task T4
would make its mean selection, pf , equal to 0.75. If it were not to be selected, pf

would be equal to 0.5. The attractiveness score of F2, scF 2 is actually positive,
meaning that the selection of F2 in T4 would increase the measured stability.

The (N+1)2

N factor of equation (6) is there to correct a downards tendency of
scf when the index of the considered task increases. This is illustrated on table
1b. If feature f is selected in each task, scf would actually decrease which would
decrease the bias. It can be shown that including the correction term leads to
scf = 2 ∗ pf − 1 with pf the proportion of the selections of feature f in the
past N tasks. Let S be the sum of the such selections. By definition, pf = S

N ,

6 Tasks can be ranked naturally from their chronological order or by the domain
expert.

7 We purposely drop the M/(M − 1) term, for convenience. Also, the denominator
k
d

(1 − k
d

) is constant if the number k of selected features is fixed.
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Table 1. Illustration of the attractiveness score (a). Need for the correction term
of equation (6)(b).

(a)
F1 F2 F3 F4 F5

T1 0 0 1 1 0
T2 0 1 1 0 1
T3 0 1 1 1 0
T4 ? ? ? ? ?
pf,no 0 0.5 0.75 0.5 0.25
pf,yes 0.25 0.75 1 0.75 0.5
scf -1 1/3 1 1/3 -1/3

(b)
T1 T2 T3 T4 T5

f 1 1 1 1
s2

f,no 1/4 2/9 3/16 4/25
s2

f,yes 0 0 0 0

s2
f,no = S

N+1 ∗ (1− S
N+1 ) and s2

f,yes = S+1
N+1 ∗ (1− S+1

N+1 ). Thus,

scf = (N + 1)2

N
∗
(

S

N + 1 −
S2

(N + 1)2 −
S + 1
N + 1 + (S + 1)2

(N + 1)2

)
=

(N + 1)2

N
∗
(

2S + 1
(N + 1)2 −

1
N + 1

)
= (N + 1)2

N
∗ 2S −N

(N + 1)2 = 2pf − 1 ut

This results demonstrates the intuitive idea that the selection should be
biased towards features that have been selected often in previous tasks. Based
on the attractiveness scores, we propose to pose

βf = exp(−scf ∗ αt) (7)

to bias the selection towards previously selected features.8 With αt = 0, features
are learned independently on each task. On the contrary, an increasing αt raises
the bias towards features that were already selected in past tasks. Domain ex-
perts can thus tune the αt values to control the accuracy-stability trade-off in
such a transfer learning setting.

5 Experiments

In this section, we evaluate to what extent an actual compromise between predic-
tion accuracy and selection stability can be made with the proposed approaches.
Experiments are performed on two distinct tasks, prostate cancer diagnosis from
microarray data and handwritten digit recognition. The Prostate dataset con-
tains 12600-dimensional (microarray) gene expression data from 52 patients with
prostate tumors and 50 healthy patients [22]. The Gisette dataset contains 5000-
dimensional integer data, with features aimed at discerning pictures of the num-
ber 4 from the number 9. Gisette was originally constructed from the MNIST
8 Again, β is post-centered such that µ(β) = 1 at each iteration of the RFE algorithm.
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data but was extended with 2500 noisy features [9]. It consists of 6000 examples,
but, in order to better illustrate the trade-off, only 100 examples are used here.

5.1 Evaluation Methodology

To obtain the results presented in the next sections, the following methodology
has been used. Each (a, φ) pair is obtained with a different α (problem 1) or
αt (problem 2). For the single task stability problem, the βf are first sampled
from the gamma distribution. Then, M bootstrap samples are built. k features
are then selected using the proposed biased RFE on each bootstrap sample. For
the transfer learning stability problem, a single bootstrap sample for each task
is created. Features are selected from it, then β for the next task is computed
according to equation (7). The final prediction model is learned by minimizing
the classical, unbiased, logistic loss with a L2 regularization (see equation (5))
with a non-strongly fitted9 regularization parameter λ. Every model is evaluated
on its out-of-bag examples. The mean accuracy as well as the stability of the
selected features are computed. As these values are obviously dependent on the
sampling of β (problem 1) or the features learned on the first few tasks (problem
2), this procedure is repeated B times and the mean values are reported. The
95% confidence regions of the expected value of the accuracy-stability trade-off
are computed as well as the confidence interval on DA described in section 3.
Stability of the feature selection (x-axis on Figures 2, 3 and 4) has not to be
confused with its corresponding uncertainty which is the width of the confidence
regions along the x-axis.

5.2 Single Task Selection Stability

The λ meta-parameter of the RFE formulation (equation (5)) has not been
strongly optimized. A value of 0.1 which provides a good accuracy has been
used for both tasks. To obtain the below graphs, the methodology detailed in
section 5.1 has been used with M = 30, k = 20 and B = 100.

Results on both data sets can be seen in Figure 3. The blue curves are
obtained without any prior knowledge. The top-left point of each subgraph cor-
responds to the (accuracy,stability) trade-off obtained with the classical logistic
RFE method. Following Pareto lines from left to right, the shape α of the gamma
distribution decreases. This makes the biased logistic RFE departs from its unbi-
ased version which raises stability but reduces classification performance. As the
method fails to reach maximum stability, it was extended with the trivial point
(arand, 1), obtained by always returning the same arbitrary feature subset.10 It
9 Values used for λ are 0.1 for problem 1 and 1 for problem 2. The final classification

algorithm does not influence the selection stability. It can thus be optimized to
maximize the predictive accuracy only.

10 It is actually impossible to reach a maximum stability of 1 for a finite regularization
parameter λ. In such a case, even with no regularization, a feature is not guaranteed
to be always selected.
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(a) (b)

(c) (d)

Fig. 3. Performance evaluation of the single task stability problem. DA obtained
on Prostate (a,c) and Gisette (b,d) with or without prior knowledge and the
corresponding confidence regions.

seems that, while it is possible to increase significantly the stability without de-
grading too much the accuracy on the Gisette dataset (Figure 3b), it is not the
case for the Prostate dataset (Figure 3a) where the accuracy drops directly.

To measure the effect of prior knowledge, N = 10 examples are sampled
randomly. The 100 features with the highest variance are selected as part of the
prior knowledge, here representing a set of potentially relevant features. As can
be seen on Figure 3a and 3b, even such a small prior knowledge improves the
Dominance Area considerably.

Figures 3c and 3d have been obtained with a small subset of the Pareto points.
The ellipses are the 95% confidence regions of the expected value (on the β
sampling) of the accuracy-stability trade-off. For large α values, the importance
of β is reduced, and thus the uncertainty limited. As α decreases, this confidence
region grows. The ellipses are also all inclined towards the right. This represents
the covariance between the accuracy and stability for a single β sampling. If the
sampling appears to be bad, .i.e. poor features are prioritized, poor accuracy
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and poor stability are obtained. The opposite is true for a good sampling. By
using the top-right and bottom-left point of each ellipse, it is possible to derive
a confidence interval on the true DA of the method on these datasets.

5.3 Multi-task Selection Stability via Transfer Learning

(a) (b)

Fig. 4. Accuracy-stability trade-off in a transfer learning setting evaluated on
Prostate (a). In red is displayed the DA obtained with the proposed biased
RFE. In blue is the DA obtained by combining the two trivial options: either
select features on each task independently, or always return the features selected
for the first task. Confidence regions of a few points computed by the biased
RFE in the transfer learning setting (b).

To generate different, yet similar, classification tasks, normally distributed
noise has been added to the Prostate dataset. This noise is centered on 0 and
has a specific standard deviation for every couple of feature and task, such
that features relevant in some task, could be irrelevant in others. Yet, tasks are
expected to share common informative features. 8 tasks are considered here, with
an arbitrary order between them. Results with k = 10, B = 500, λ = 1 are shown
on Figure 4a. The blue area is obtained by combining two trivial options. First,
the features learned on the first task can be selected for all subsequent tasks,
achieving a stability of 1. Or features can be learned independently from each
other (equivalent to αt = 0). This strategy offers poor selection stability, but also
a sub-optimal classification performance. Knowledge from previous tasks can be
used to guide the search towards potentially good features for subsequent tasks.
This increases both the accuracy and stability at first. Then, the accuracy starts
to decrease, as the selection of features is forced too much. This tendency is
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better illustrated in Figure 4b, which contains some non-Pareto optimal points.
This result is consistent with the conclusion drawn by the analysis of the Group-
Lasso with `1/`p regularization [25], i.e. that weak coupling norms (1.5 ≤ p ≤
2) outperforms no and strong coupling norms. Unlike for single task feature
selection, the confidence regions are similar for all compromises, meaning that
differential shrinkage does not increase the uncertainty of the obtained accuracy-
stability pair. Furthermore, as the ellipses are straight, the measured accuracy
and stability are uncorrelated.

6 Conclusion and Perspectives

The typical instability of standard feature selection methods is a key concern
nowadays as it reduces the interpretability of the predictive models as well as
the trust of domain experts towards the selected feature subsets. Such experts
would often prefer a more stable feature selection algorithm over an unstable
and slightly more accurate one. In this paper, the compromise between feature
relevance and selection stability is made explicit by biasing the selection towards
some features through differential shrinkage of the Recursive Feature Elimina-
tion algorithm. Domain experts are given the opportunity to select any Pareto-
optimal trade-off of accuracy and selection stability based on their preferences.
We propose the use of the hypervolume metric to assess the performance of meth-
ods realizing such a compromise. An associated confidence interval, based on the
derivation of confidence regions of the accuracy-stability trade-off, is derived.

Results on prostate cancer diagnosis and handwritten recognition tasks show
that the selection stability can be increased at will, often with a cost of classi-
fication performance. When some prior knowledge is available, far better com-
promises can be made. The design and evaluation of hybrid methods, learning
the prior knowledge from the data, and using it to stabilize the selection is part
of our future work.

Motivated by the needs of domain experts, across tasks feature stability is
also studied in a transfer learning setting (i.e. when tasks are ordered). A biasing
scheme that takes the stability measure explicitly into account is proposed. For
similar, yet different, tasks, we show on microarray data that some bias is at first
beneficial for both the accuracy and the stability. A too strong bias continues to
increase the selection stability but at the cost of some classification performance,
as the most relevant features vary across tasks. Our approach is evaluated here
in a simulated transfer learning setting and further experimental validations will
be conducted.

Different multi-task feature selection methods have been proposed in the
literature (e.g. Group-Lasso with `1/`p regularization [25], additive linear mod-
els [8], . . . ). Such methods were introduced with the primary objective of building
accurate predictive models across several (this time unordered) tasks. We will
study to which extent they could also be used to allow the tuning of the across
task selection stability and classification performance trade-off. The biased RFE
proposed here can be extended to tackle classical multi-task feature selection, for
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example by prioritizing the most relevant features when all tasks are considered
together. Our future work includes the evaluation of all these approaches in the
proposed assessment framework.

The present paper answers the growing necessity of considering the selection
stability not only as a side-effect of learning accurate predictive models but as an
actual goal in a bi-objective framework. It proposes initial approaches to learn
Pareto-optimal compromises in such a framework and, hopefully, opens the way
to new works and improvements in this area.
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Abstract. In recent years, deep learning has shown supreme results in
many sequence labelling tasks, especially in natural language process-
ing. However, it typically requires a large training data set compared
with statistical approaches. In areas where collecting of unlabelled data
is cheap but labelling expensive, active learning can bring considerable
improvement. Sequence learning algorithms require a series of token-level
labels for a whole sequence to be available during the training process.
Annotators of sequences typically label easily predictable parts of the
sequence although such parts could be labelled automatically instead.
In this paper, we introduce a combination of active and semi-supervised
learning for sequence labelling. Our approach utilizes an approximation
of Bayesian inference for neural nets using Monte Carlo dropout. The
approximation yields a measure of uncertainty that is needed in many
active learning query strategies. We propose Monte Carlo token entropy
and Monte Carlo N-best sequence entropy strategies. Furthermore, we
use semi-supervised pseudo-labelling to reduce labelling effort.
The approach was experimentally evaluated on multiple sequence la-
belling tasks. The proposed query strategies outperform other existing
techniques for deep neural nets. Moreover, the semi-supervised learn-
ing reduced the labelling effort by almost 80% without any incorrectly
labelled samples being inserted into the training data set.

Keywords: Active Learning · Semi-supervised Learning · Bayesian In-
ference · Deep Learning · Sequence Labelling

1 Introduction

Deep learning is achieving state-of-the-art performance in image or video pro-
cessing, audio processing or natural language processing. However, without using
a pretrained model, deep learning typically requires a large amount of data. To
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obtain unlabelled input for deep networks in video processing, cameras and other
sensors are increasingly available. In natural language processing, a lot of unla-
belled inputs can be obtained for almost no cost by gathering them from web
sites. Unfortunately, labelling such data is very time consuming and expensive.

In this situation, we can benefit from semi-supervised learning using a large
unlabelled dataset along with a small labelled one. Another option is to use
active learning wherein each iteration, a part of an annotation budget is spent
on labelling the most informative unlabelled samples. The model is retrained
including those new samples and the process repeats. The annotation budget is
significantly lower than the total number of available unlabelled samples.

Although active learning is a promising way to benefit from unlabelled data,
the most common query strategy, uncertainty sampling, requires a measure of
uncertainty. In sequence labelling, the measure can be easily defined for statisti-
cal models, such as hidden Markov models or conditional random fields (CRF),
as they provide a probability of the labelled sequence or a marginal probability
distribution for each element of the sequence. For neural networks, defining an
uncertainty measure is more complicated since the soft-max activation function,
typically used in the last network layer, does not correspond to a real uncer-
tainty of network predictions. To overcome this issue, one can use a Bayesian
neural network or include a statistical model, such as CRF, as the last layer of
the network.

In sequence labelling, query strategies can be divided into two groups. The
first group computes the uncertainty of the sequence predicted by a model.
Query strategies of the second group compute uncertainties of separated tokens
and then aggregate them to express the uncertainty of the whole sequence.

Querying the most informative sequence means that the annotator has to
label every token of the sequence. This is expensive and often not necessary
because some tokens can be very reliably annotated automatically. This situation
can be found in many natural language processing (NLP) tasks, where some
words can be assigned to only one category and we can predict that without
knowing the context. A similar situation can be found in a video where two
consecutive frames often contain the same or similar information and labelling
all frames might be inefficient.

In this paper, we propose an active learning algorithm for sequence labelling
with deep neural networks that queries labels of the most informative tokens
whereas other labels are labelled automatically.

In the following section, we summarize approaches addressing this topic. In
section 3, we define the architecture of our sequence labelling models. In section
4, we describe details of the proposed algorithm. The algorithm is evaluated
with experiments on tasks from natural language processing and the results are
shown in section 5.
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81



Semi-Supervised Active Learning in Sequence Labelling 3

2 Related Work

Sequence labelling models have been used in many areas such as part of speech
tagging (POS) or named entity recognition (NER) [25], handwritten recogni-
tion [9], protein secondary structure prediction [19], video analysis [39] or facial
expression dynamic modeling [4]. In the early years, probabilistic models were
the most frequent approach. The most commonly used among them are Hidden
Markov models, dynamic Naive Bayesian classifiers, maximum entropy Markov
models or Conditional Random fields.

With the increasing amount of data and computational power, and with for-
mulating new network topologies, deep networks are more and more popular in
sequence labelling. This is especially true for long short term memory networks
(LSTM), which deal well with vanishing gradient problem and are able to incor-
porate context far from the predicted token. One of the state-of-the-art topolo-
gies in sequence labelling is the bi-directional LSTM network (BI-LSTM) [34]
or an extended version with a CRF layer on top (BI-LSTM-CRF) [15]. An-
other interesting topology specific to language processing uses an additional
layer (LSTM [23] or CNN [22]) as a character-level embedding for words.

Active Learning in Sequence Labelling was studied intensively for proba-
bilistic models [37]. Query strategies used in AL can be categorized into several
groups. Uncertainty Sampling that selects the most uncertain samples, Query by
Committee selects samples in which a committee disagree the most, Expected
Gradient Length selects samples that would conduct the greatest change to the
current model or Fisher information strategy that selects samples that mini-
mize the model variance. These strategies differ in computational complexity
and model requirements. The most commonly used strategy, uncertainty sam-
pling, requires the model to return confidence of its predictions. Furthermore, to
avoid querying samples that are rather outliers than representative samples, the
informativeness of the sample is weighted by its average similarity to all other
samples. The technique is called information density [37].

In active learning for sequence labelling, the most informative sequence is
labelled. The sequence is then added to the training set, the model is retrained
and the process repeats. This requires the whole sequence to be labelled at
once. In contrast, Tomanek [40] introduced the SeSAL algorithm, where parts of
sequences can be labelled automatically. That algorithm was designed for HMMs
and CRFs.

Active Learning in Connection with Deep Learning Although active
learning has been applied to many ML tasks, application to deep learning is
marginal compared to probabilistic modelling. One of the main problems in deep
active learning is that many query strategies require some uncertainty estimate,
however, most kinds of deep neural networks rarely support it. In literature, we
can find several approaches approximating the model posterior: variational infer-
ence [8], probabilistic back-propagation [11], Monte-Carlo (MC) dropout [6, 16]
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or mixture density networks [3]. With such approximations of uncertainty, active
learning has been used in connection with deep learning in image classification [7]
or text classification [1]. In the sequence labelling area, active deep learning was
successfully used for NER. In [38], a CNN-CNN-LSTM network was used to-
gether with active learning in a setup where the whole queried sequence had to
be labelled at once.

3 Underlying Models

A sequence labelling model assigns categorical labels to all members (tokens)
of a sequence of observed values. In general, it considers the optimal label for
a given token to be dependent on the choices of nearby tokens. The problem is
often simplified through the assumption that the sequence of labels is a Markov
chain. With that simplification, the problem can be modelled with a probabilis-
tic graphical model such as a hidden Markov model [29] or a conditional random
field. Although the probabilistic models work well on many sequence labelling
tasks [21], the Markov property assumption might be too restrictive and unreal-
istic for problems where a wider context is needed to label tokens correctly. This
can be overcome by considering dependencies of higher-order but the compu-
tational complexity is growing exponentially with the order which makes these
models unusable for real-world problems. Deep learning neural networks can help
to overcome the issue of wider context.

Deep Learning Models. In sequence labelling, various kinds of neural net-
works are used. These networks are typically designed for a specific task. This is
particularly true for their first layers that extract features. In NLP, a character
level embedding layer extracts low-level features from the text. In video analysis,
feature vectors are extracted using pretrained convolutional networks. After the
first layer, a layer that incorporates contextual information from neighbouring
elements is plugged in. The most commonly used layers on this level are LSTM
cells [13] or gated recurrent unit (GRU) [2]. Last, a sequence decoder layer is
used to predict the final sequence. Both context independent layers, for exam-
ple a fully connected dense layer (BI-LSTM-FCN) (Figure 1a), and contextual
layers, for example conditional random fields (BI-LSTM-CRF) (Figure 1b), can
be used.

Moreover, to avoid over-fitting, a dropout regularization technique can be
used. In our experiments, we use dropout for non-recurrent connections (solid
lines in Figure 1). The dropout enabled for each layer allows to estimate predic-
tion uncertainties, as the following section describes.

Bayesian neural networks aim to tackle several drawbacks of neural networks
such as overconfidence about their predictions or tendency to overfitting. In
classification, the prediction probabilities obtained from the soft-max function
are often erroneously interpreted as model confidence [6]. It means, the model
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Fig. 1: Schematic representation of deep neural network sequence labelling mod-
els used in experiments.

can be uncertain despite high values of the soft-max function and these values
require correct calibration [10] before using them as confidences. The main idea of
Bayesian neural networks is placing probabilistic distribution over nets’ weights
[24,26]. However, the approach introduces two issues, intractable inferences and
computation costs. Although stochastic variational inference [14,18,27,30] solves
the problem with intractable inference, the number of parameters is doubled and
it requires more time to converge.
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Gal & Ghahramani introduced Monte Carlo dropout [6]. They have shown
that dropout or various other stochastic regularization techniques can be used
to obtain an approximation of Bayesian inference. Consider a sequence of input
vectors denoted x to which a sequence of labels denoted y is assigned. A training
set containing pairs 〈x, y〉 is denoted T . Consider a neural net with parameters
ω that uses dropout at every layer for the training. Using dropout during testing
can be seen as sampling from a model’s approximate posterior. This leads to
approximate variational inference in which a tractable distribution q∗θ(ω) min-
imizes the Kullback-Leibler (KL) divergence [20] to the true model posterior
p(ω|T ) given a training set T . The prediction uncertainty can be approximated
by marginalization over the approximate posterior using Monte Carlo integra-
tion:

p(y = c|x, T ) =

∫
p(y = c|x, ω)p(ω|T )dω

≈ 1

R

R∑

t=1

p(y = c|x, ω̂t),

where ω̂t ∼ q∗θ(w), R is the number of Monte Carlo runs, and where qθ(w)
denotes the Dropout distribution [7].

Monte Carlo dropout does not affect the model training complexity, however,
each point has to be inferred repeatedly to obtain prediction uncertainty.

4 Active Learning Strategies

Query strategies for sequence labelling models can be divided into several frame-
works such as uncertainty sampling (US), query by committee (QbC), expected
gradient length (EGL) or information density (ID) [36]. In this section, we de-
scribe some of the strategies and propose how they can be used together with
the introduced models. The most informative samples are considered to be found
by maximising a particular utility function:

x∗ = arg max
x

φ(x).

The probability of the sequence y in a by model M given the input sequence
x is denoted PM (y|x). The set of labelled sequences is denoted L and set of
unlabelled sequences is denoted U .

4.1 Query Strategies Utility Functions

Query strategies of the uncertainty sampling framework select the sequences
that have the most uncertain label. The uncertainty measure can be expressed
in several ways. Least confidence query strategy [5] selects the sequence with
the lowest probability of the most likely sequence:

φLC(x) = 1− PM (y∗|x),
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where y∗ is the most likely sequence. For CRF, the most likely sequence and
its probability can be found using the Viterbi algorithm. For neural nets, the
probability of the most likely sequence can be approximated by an empirical
probability based on Monte Carlo dropout, which will be denoted PMC

M (y|x). This
empirical distribution is calculated by counting the occurrences of the sequence
y for input sequence x in several forward passes through the network, where each
forward pass has a different dropout mask. These counts are normalized to sum
to 1.

Margin query strategy [33] selects samples where the first and the second
most likely sequences have the most similar probabilities. Finding the second
most likely sequence in case of probabilistic graphical models requires an updated
version of the Viterbi algorithm called N-best Viterbi algorithm [35]. For neural
nets, the distribution PMC

M (y|x) can be used to find the probability of the second
most likely path.

The margin query strategy utility function is defined as:

φM (x) = −
(
PM (y∗1 |x)− PM (y∗2 |x)

)
,

where y∗1 and y∗2 are first and second the most likely sequences.
Token entropy query strategy [37] uses the Shannon entropy of the model’s

posteriors:

HM (l) = −
K∑

k

PM (yl = k) logPM (yl = k),

where yl is label of the sequence in time l and K is the number of possible labels,
over its labellings to define the utility function for selecting the most uncertain
sequence:

φTE(x) = − 1

L

L∑

l=1

HM (l),

where L is the length of the sequence. The utility function is normalized by the
length of the sequence. Omitting this normalization, the strategy would lead to
querying long sequences as they contain more information. The unnormalized
utility function is called total token entropy.

Whereas the marginal probability for CRF can be calculated using forward
and backward scores, those scores are not available for neural networks. We pro-
pose an approximation called Monte Carlo approximation token entropy,
which uses the idea of Bayesian inference with Monte Carlo [6]:

φTEMC(x) = − 1

L

L∑

l=1

K∑

k=1

(
PMC
M (yl = k) logPMC

M (yl = k)).

Sequence entropy query strategy computes the entropy of probabilities of
all possible sequences. This strategy is unfeasible for long sequences as the num-
ber of possible sequences grows exponentially with the length of the sequence.
Furthermore, it is not possible to obtain probabilities of a particular sequence
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directly in neural network based models. For probabilistic graphical models, the
strategy can be approximated with the N-best sequence entropy [17]:

φNSE(x) = − 1

C1

∑

ŷ∈N
PM (ŷ|x)logPM (ŷ|x),

where N = {y∗1 , ..., y∗N} is set of N most likely sequences found by N-best Viterbi
algorithm [35] and C1 normalizes the probabilities to sum to 1.

While the probabilities of N most likely sequences can be obtained directly
in probabilistic models, this cannot be done in neural networks. Therefore, we
propose a Monte Carlo approximation of the sequence entropy:

φNSEMC (x) = − 1

C2

∑

ŷ∈NMC

PMC
M (ŷ|x)logPMC

M (ŷ|x), (1)

where NMC = {y1, y2, . . . } is set of all sequences predicted by Monte Carlo
sampling and C2 normalizes the probabilities to sum to 1.

In the query by committee framework, a committee of models C = {M (1), ...,M (C)},
representing different hypotheses, is maintained during the whole process of
learning. The committee is used to query the sequence over which the mem-
bers are most in disagreement about how to label it. The committee is usually
trained using bagging. In each round, the labelling set is sampled with replace-
ment to create a unique training set L(C) that is used to train model M (C). The
committee prediction is obtained by models voting. In the context of deep neural
networks, maintaining a committee is too expensive for practical use. Although
dropout can be considered as a form of bagging [12], we do not deal with the
framework in the paper.

US and QbC strategies are prone to querying outliers as they are often un-
certain for the model and the committee of models often disagrees about them.
The framework, called information density(ID), can be used to avoid this
problem. ID uses a base utility function φB(x) and weights it by samples‘ rep-
resentativeness. All above defined utility functions can be used as base utility
functions. ID utility function is defined:

φID(x) = φB(x)×
( 1

|U|

|U|∑

u=1

sim(x, x(u))
)β
, (2)

where sim(x, x(u)) is a chosen similarity function for two sequences and β a
parameter that controls a relative importance of the representativeness term.
The similarity measure differs from task to task.

4.2 Token-Level Semi-Supervised Active Learning

In the standard AL approach, the annotator has to label the whole sequence
although the sequence can contain subsequences that do not add too much value
to the utility function. If the model is sufficiently learned, these subsequences can
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be easily annotated automatically using model inference. The decision whether
a token can be labelled automatically can rely on some kind of model confidence
[40] or the disagreement about the most probable paths [31].

We propose to use a combination of active and semi-supervised learning. For
models with CRF layer on the top, marginal probability represents the model
prediction confidence. Otherwise, the Monte Carlo dropout estimates the model
prediction confidence. First, the most informative sequence is found with a cho-
sen query strategy. Tokens in which the model is confident are automatically
labelled using semi-supervised learning and the rest is given to an annotator.
The labelled sequence is added to the training set and the process repeats. De-
tails of the approach are described in Algorithm 1. The confidence threshold has
to be chosen according to the model, problem type and query strategy.

Algorithm 1: Sequential semi-supervised AL framework

Input:
L: labelled set
U : unlabelled set
φ(·): query strategy utility function
θ: confidence threshold
M : model type
begin

train model m of type M on data set L
while stopping criterion is not met do

// Find the most informative sequence from U
x∗ = argmaxx∈Uφ(x)
// label the sequence with the model or query the annotator
ŷ = m(x∗)
for i = 1 to length of x∗ do

if Pm(yi = ŷi|x∗) > θ then
y∗i = ŷi

else
y∗i = query(x∗i )

end

end
L = L ∪ 〈x∗, y∗〉
U = U \ x∗
retrain model m on L

end

end

5 Experiments

To evaluate the performance of the proposed approach, we have chosen three
different sequence labelling problems: named entity recognition(NER), part of
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speech tagging (POS) and chunking. Experiments were performed with two se-
quential models: BI-LSTM-FCN with Monte Carlo dropout and BI-LSTM-CRF,
and various query strategies designed for each of those models.

In the paper, we report two experiments. The first experiment tests proposed
query strategies against random sampling and least confident query strategies
as a baseline. The second experiment is using sequential semi-supervised active
learning framework to reduce the labelling effort. Our primary aim was reducing
the amount of labelled data required for training, rather than labelling perfor-
mance. Therefore, we did not extensively optimize hyper-parameters such as
learning rate, batch size or momentum.

5.1 Experiment Design

The experiments were performed on the publicly available benchmark dataset
CoNLL 2003 [32]. The dataset provides a predefined training set and two testing
sets for POS, NER and Chunking. We report performance for the testing set A.
The training set was randomly divided into a labelled set and an unlabelled set
in the ratio 1:9.

Both models use GloVe embeddings [28] where each word is represented by
a vector of length 300. The models contain two LSTM hidden layers with size
100 and dropout with probability 0.4 applied to all layers. The last layer of the
BI-LSTM-FCN is linear and uses the soft-max activation function. The number
of forward passes for computing PMC was set to 500.

First, each model was trained on the labelled training set with 10% of the
original size for 30 epochs. This model was used for experiments with all query
strategies. For each query strategy, the model was used to find the most likely
paths and their scores together with tokens prediction confidences for all unla-
belled sequences. The most informative sequences were selected and annotated
until the annotation budget was exhausted. We have defined the annotation bud-
get of one AL cycle in two ways: the number of labelled sequences and the total
number of annotated tokens. In the first scenario, 100 sequences were selected
and annotated, whereas, in the second scenario, sequences were annotated until
the total number of annotated tokens reached 1000. With the updated labelled
training set, the model was updated by iterative training for one epoch, then
the new score was calculated. This active learning cycle was repeated 20 times.
In the second experiment, samples were sorted according to their confidences,
and the threshold value was chosen to achieve 0% or 1% of incorrectly labelled
samples.

Early results showed that proposed query strategies are prone to select out-
liers. Therefore, the information density wrapping strategy was used for all of
them. Each sequence was represented by the average of embedding vectors. The
representativeness of the sequence was computed as an average cosine distance
to all other sequences in the unlabelled dataset. The cosine distance is claimed
to be an efficient similarity measure of the linguistic or semantic similarity of
corresponding words for the chosen embedding [28]. In the results, we use the
names of base query strategies for clarity.
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5.2 Results

In experiments, we studied the achieved performance in terms of F-measure
(specifically F1 score) and accuracy by particular query strategies and the num-
ber of tokens that can be labelled automatically by semi-supervised learning.
We report the macro-averaged F1 score that is calculated:

F1macro =
1

|Q|
∑

q∈Q
F1q,

where Q is the set of all possible labels and F1q is the F1 score for the class
labeled q considered as the positive class and all remaining classes as the negative
class.

These scores were compared with the models learned on the whole labelled
dataset and models learned on a small labelled dataset that was later used for
active learning.

Query Strategies Comparison Query strategies were compared in two AL
scenarios: an unlimited number of tokens and a limited number of tokens. Table
1a shows that the strategies MC total token entropy and MC sequence entropy
outperforms other strategies in both F1 score and accuracy. The MC total token
entropy, however, required more tokens to be labelled. In NER, it queried almost
twice as many tokens. In the scenario with a limited number of tokens, the MC
sequence entropy dominates over other strategies except in the Chunking.

Table 1b shows that for the BI-LSTM-CRF model, the least confident and
total token entropy query strategies have shown better results compared to the
token entropy query strategy. We conclude that total token entropy query strat-
egy dominates in the scenario with an unlimited number of tokens, whereas
least confident achieves better results in the scenario with a limited number of
tokens. The sequence entropy query strategy is missing as our implementation
was lacking n-best Viterbi algorithm.

Moreover, Table 1b shows that the MC sequence entropy query strategy is
the best among the compared strategies in the NER and POS tasks during the
whole AL loop if the number of annotated tokens is limited in each cycle of the
AL loop (Figures 2a and 2b).

Active Learning in Combination with Semi-supervised Learning Last,
we studied a possible reduction of the labelling effort using semi-supervised learn-
ing. We report how many tokens were automatically labelled if the threshold is
set to not allow errors propagate into the training dataset and if 1% of errors
are allowed. The results in Table 2 indicate that the BI-LSTM-CRF model has
a more reliable uncertainty measure for the marginal distribution than the BI-
LSTM-FCN model. It can reduce the labelling effort up to almost 80% without
any incorrectly labelled samples being inserted into the training data set. The la-
belling effort is reduced up to almost 84% with 1% of incorrectly labelled samples
being inserted into the training dataset.
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Table 1: Comparison of query strategies for BI-LSTM-FCN. The column ’Tokens’
represents the ratio of labelled tokens to the number of all tokens in sequences
from the complete dataset. The percentage sign is omitted. The first two lines
of the table report performance of the supervised model trained on complete
dataset and dataset with only 10% of training data available respectively.

(a) BI-LSTM-FCN

NER POS Chunking
F1 Acc Tokens F1 Acc Tokens F1 Acc Tokens

No active learning

BI-LSTM-FCN
85.3 98.6 100 85.3 95.4 100 70.5 96.0 100
75.4 97.7 10 74.6 92.0 10 53.7 93.7 10

Active learning with an unlimited number of tokens

Random 73.5 98.1 24 79.6 93.2 24 54.8 94.7 25
Least Confident 76.2 98.0 17 83.2 93.7 39 57.8 95.0 33
MC Token Entropy 77.2 98.2 24 82.7 93.7 40 57.8 94.8 36
MC Total Token Entropy 82.4 98.3 40 83.0 93.7 45 63.4 95.0 45
MC Sequence Entropy 78.0 98.4 26 83.3 94.0 41 59.7 95.0 37

Active learning with a limited number of tokens

Random 76.5 98.0 20 78.1 93.3 20 53.3 94.5 20
Least Confident 76.9 98.0 20 80.8 93.1 20 55.2 94.5 20
MC Token Entropy 76.8 98.1 20 81.5 93.0 20 55.3 94.5 20
MC Total Token Entropy 76.9 98.1 20 80.2 93.2 20 56.7 94.4 20
MC Sequence Entropy 77.5 98.3 20 82.0 93.4 20 55.3 94.4 20

(b) BI-LSTM-CRF

NER POS Chunking
F1 Acc Tokens F1 Acc Tokens F1 Acc Tokens

No active learning

BI-LSTM-CRF
85.5 98.7 100 82.3 95.3 100 58.1 95.9 100
75.9 97.8 10 72.8 92.0 10 50.2 93.7 10

Active learning with unlimited number of tokens

Random 76.8 98.1 24 75.2 93.3 24 50.7 94.6 24
Least Confident 78.4 98.6 33 81.4 94.0 40 56.0 95.2 37
Token Entropy 77.3 98.3 23 75.0 93.0 17 55.9 94.9 20
Total Token Entropy 78.0 98.5 32 82.0 94.0 39 56.3 95.1 40

Active learning with limited number of tokens

Random 76.4 98.0 20 75.6 93.2 20 55.7 94.4 20
Least Confident 77.4 98.3 20 82.1 93.3 20 57.0 94.5 20
Token Entropy 77.4 98.3 20 75.6 93.6 20 56.4 94.7 20
Total Token Entropy 77.5 98.3 20 79.3 93.3 20 56.5 94.6 20
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Fig. 2: Query strategies comparison for NER and POS for BI-LSTM-FCN in the
scenario with fixed number of annotated tokens.

6 Conclusions and Future Work

In this paper, we presented an application of Monte Carlo dropout, an approxi-
mation of Bayesian inference for deep neural networks, to active learning strate-
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Table 2: Proportion of data labelled automatically by pseudo-labelling.

Task type NER POS CHUNK

Allowed errors 0% 1% 0% 1 % 0 % 1 %

BI-LSTM-FCN

Least confident 6.9 21.5 0.2 1.7 3.5 10.5
Sequence entropy 14.2 28.7 0.3 2.0 3.6 10.5
Total token entropy 7.8 12.8 0.2 1.4 2.0 6.2
Token entropy 9.0 18.7 0.2 1.6 2.6 8.3

BI-LSTM-CRF
Least confident 77.3 84.3 72.4 82.5 66.6 79.6
Token entropy 79.5 83.7 72.2 77.9 72.9 79.3
Total token entropy 75.5 83.5 71.2 81.6 65.3 78.3

gies developed for probabilistic graphical models. We proposed two not yet used
adaptations of token entropy and sequence entropy query strategies suitable for
LSTM-type deep neural networks. Moreover, we tested a combination of active
and semi-supervised learning for sequence labelling for that network.

The proposed query strategies have shown a substantial improvement over
the until now used strategy in sequence labelling with deep neural networks,
least confident. The proposed strategies outperformed the least confident in all
three considered sequence labelling tasks in case of the network without a CRF
layer. This is particularly true, if the annotation budget is limited for each active
learning batch, which is a typical real-world situation.

The combination of active and semi-supervised learning allows us to achieve
up to 80% labelling cost reduction for the BI-LSTM-CRF model. The uncertainty
measure based on Monte Carlo dropout, however, still needs improvement to
achieve labelling effort reduction comparable with BI-LSTM-CRF. To this end,
we would like to study uncertainty measures provided by other approaches to
Bayesian recurrent neural networks.

Although uncertainty sampling has shown to be applicable to deep neural
networks, other active learning frameworks have not been enough studied. In
the future, we would like to study, in the context of sequence labelling and deep
neural networks, active learning based on expected gradient length. In addition
to this, we would like to apply deep active learning to sequence labelling in video
processing, where context is also very important information.
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Abstract. We present the concept of Guided Learning, which outlines
a framework that allows a Reinforcement Learning agent to effectively
‘ask for help’ as it encounters stagnation. Either a human or expert agent
supervisor can then optionally ‘guide’ the agent as to how to progress
beyond the point of stagnation. This guidance is encoded in a novel
way using a separately trained neural network referred to as a ‘Taught
Response Memory’ that can be recalled when another ‘similar’ situation
arises in the future. This paper shows how Guided Learning is algorithm
independent and can be applied in any Reinforcement Learning context.
Our results achieved superior performance over the agents non-guided
counterpart with minimal guidance, achieving, on average, increases of
136% and 112% in the rate of progression of the champion and average
genomes respectively. This is due to the fact that Guided Learning allows
the agent to exploit more information and thus, the agent’s need for
exploration is reduced.

Keywords: Active learning · Agent teaching · Evolutionary algorithms
· Interactive adaptive learning · Stagnation

1 Introduction

One of the primary problems with training any kind of modern AI in a Rein-
forcement Learning environment is stagnation. Stagnation occurs when the agent
ceases to make progress in solving the current task prior to either the goal or the
agents maximum effectiveness being reached. The reduction of stagnation is an
important topic for reducing training times and increasing overall performance
in cases where training times are limited.

This paper will present a method to reduce stagnation and define a framework
for a kind of interactive teaching/guidance where either a human or expert agent
supervisor can guide a learning agent past stagnation.

* This publication emanated from research conducted with the financial support of
Science Foundation Ireland (SFI) under Grant Number 13/RC/2106.

c© 2019 for this paper by its authors. Use permitted under CC BY 4.0.
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In terms of related work, we will briefly discuss Teaching and Interactive Adap-
tive Learning. The concept of Teaching[3] encompasses agent-to-agent [6], agent-
to-human [8] and human-to-agent teaching [1]. Guided Learning is a form of
Teaching that can take advantage of both human-to-agent and agent-to-agent.
Interactive Adaptive Learning is defined as a combination of Active Learning,
a type of Machine Learning where the algorithm is allowed to query some in-
formation source in order to obtain the desired outputs, and Adaptive Stream
Mining which concerns itself with how the algorithm should adapt when dealing
with time changing data [2].

2 Guided Learning

Guided Learning encodes guidance using what we refer to as Taught Response
Memories (TRMs), which we define as: a memory of a series of actions that an
agent has been taught in response to specific stimuli. A TRM is an abstract con-
cept but its representation must allow for some plasticity in order to adapt the
memory over time, this allows a TRM to tend towards a more optimal solution
for a single stimulus or towards its applicability, more generally, to other stimuli.
In this paper we represent TRMs as separately trained feed-forward neural net-
works. TRMs may consist of multiple actions and this can cause non-convergence
when conflicting actions are presented, therefore we define a special case TRM,
referred to as a Single Action TRM (SATRM). Using SATRMs, multiple actions
can be split into their single action components, therefore removing any conflict-
ing actions. Due their independence from the underlying algorithm, TRMs (and
subsequently Guided Learning) can be used with any Reinforcement Learning
algorithm.

The ideal implementation of Guided Learning can be best described using an
example. In the game Super Mario Bros, when a reinforcement agent stagnates at
the first green pipe (see Fig. 1 in Appendix A), the agent can request guidance
from a supervisor. If no guidance is received within a given time period, the
algorithm will continue as normal. Any guidance received is encoded as a new
TRM. The TRM can be ‘recalled’ in order to attempt to jump over, not only
the first green pipe but the second, and the third and so on. A TRM is ‘recalled’
if the current stimulus falls within a certain ‘similarity threshold’, θ < t, of the
stimulus for which the TRM was trained, i.e. θ = arccos a.b

|a||b| where a and b are

the stimulus vectors. Because each TRM is plastic, it can tend towards getting
more optimal at either jumping over that one specific green pipe or jumping over
multiple green pipes. This also helps in cases where guidance is sub-optimal. A
full implementation of Guided Learning can recall the TRM, not only in the
first level or in other levels of the game but in other games entirely with similar
mechanics to the original game (i.e. another platform or ‘jump and run’ based
game, where the agent is presented with a barrier in front of it). For more
information please refer to the extended version of this manuscript [7].
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3 Methodology

The effectiveness of a limited implementation of Guided Learning1 will be mea-
sured using the first level of the game Super Mario Bros2. The underlying
Reinforcement Learning algorithm used was Neural Evolution of Augmenting
Topologies (NEAT)[5]. NEAT was chosen firstly due to it’s applicability as a
Reinforcement Learning algorithm and secondly due to NEATs nature as an
Evolutionary Algorithm. The original intent was to reuse TRMs across multiple
genomes. While this worked to an extent (see Avg Fitness metric in Fig. 3 in
Appendix B.1), it was not as successful as originally hoped. This is because dif-
ferent genomes tend to progress in distinct ways and future work still remains
in regards to TRM reuse. Stagnation was defined as evaluating 4 generations
without the champion genome making progress.

To evaluate Guided Learning, a baseline was created that only consisted of the
NEAT algorithm. The stimulus was represented as raw pixel data with some
dimensionality reduction (see Fig. 2 in Appendix A). The Guided Learning im-
plementation then takes the baseline and makes the following changes: 1) Al-
lows the agent to ‘ask for help’ from a human supervisor when stagnation is
encountered. 2) Encodes received guidance as SATRMs. 3) Activates SATRMs
as ‘similar’ situations are encountered.

Both the baseline and Guided Learning algorithms were evaluated 50 times,
each to the 150th generation. ‘Best Fitness’ and ‘Average Fitness’ results refer
to the fitness of the champion genome and average fitness of the population at
each generation respectively. Where ‘fitness’ is defined as the distance the agent
moves across the level.

4 Results & Discussion

For Guided Learning, an average of 10 interventions were given over an average
period of about 8 hours. Interventions were not given at each opportunity pre-
sented and were instead lazily applied, averaging to 1 intervention for every 3
requests. The run-time of Guided Learning was mostly hindered by the overhead
of checking for stimulus similarity, this resulted in an extra run-time of about
2x the baseline. This run-time can be substantially improved with some future
work.

Guided Learning achieved 136% and 112% improvements in the regression slopes
for both the Mean Best Fitness and Mean Average Fitness respectively (see Fig.
3 in Appendix A). We also looked at the best and worst performing cases. These
results can be seen in Fig. 4 and Table 2 in Appendix B.2.

1 https://github.com/BeelGroup/Guided-Learning
2 Disclaimer: The ROM used during the creation of this work was created as an archival

backup from a genuine NES cartridge and was NOT downloaded/distributed over
the internet.

Guided Learning

98



4 K. Tunstead and J. Beel

The results obtained show good promise for Guided Learnings potential as such
results were obtained with only a partial implementation and much future work
still remains.

Some of the limitations of Guided Learning include the need for some kind
of supervisor, its current run-time and its domain dependence i.e. a TRM for
‘jump and run’ games would not work in other games with different mechanics
or reinforcement scenarios.

Future work will include: 1) Building Guided Learning using more state of the art
Reinforcement Learning algorithms [4]. 2) Using a more generalized encoding of
the stimulus to allow TRMs to be re-used more readily while still balancing the
false-negative and false-positive activation trade-off (i.e. feeding raw pixel data
into a trained classifier). 3) Implementing TRM adaptation. 4) Taking advantage
of poorly performing TRMs as a method of showing the agent what not to do
[3]. 5) Run-time optimization by offloading the similarity check and guidance
request to separate threads, this would mean that the agent would no longer
wait for input and TRM selection predictions can also be made as the current
stimulus converges towards a valid TRM stimulus.
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A Figures & Tables

Fig. 1. First pipe encounter in Super Mario Bros.

(a) (b)

(c) (d)

Fig. 2. Input Reduction Pipeline Examples. (a) Raw RGB Frame (b) Grayscaled
Frame (c) Aligned and Tiled Frame (d) Radius Tiles Surrounding Mario, r = 4
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Table 1. NEAT Configuration Used During Evaluation

Parameter Value
Initial Population Size 50
Activation Function Sigmoid
Activation Mutation Rate 0
Initial Weight/Bias Distribution Mean 0
Initial Weight/Bias Distribution Std. Deviation 1
Weight & Bias Max Value 30
Weight & Bias Min Value -30
Weight Mutation Rate 0.5
Bias Mutation Rate 0.1
Node Add Probability 0.2
Node Delete Probability 0.1
Connection Add Probability 0.3
Connection Delete Probability 0.1
Initial number of Hidden Nodes 6
Max Stagnation 20
Elitism 5

B Results Figures & Tables

B.1 Average Results Over 50 Trials

Fig. 3. Baseline vs. Guided Learning Average Results Per Generation (Higher is bet-
ter).
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B.2 Best & Worst Case Results

(a)

(b)

Fig. 4. Baseline vs. Guided Learning Best and Worst Case Results (Higher is better).
(a) Best Fitness. (b) Avg Fitness.
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Table 2. Baseline vs. Guided Learning Best and Worst Case Slope Results

Baseline Guided Learning Improvement
Best Fitness (Highest Slope) 7.25 17.16 137%
Best Fitness (Lowest Slope) 0.51 1.07 110%
Avg Fitness (Highest Slope) 1.98 13.03 558%
Avg Fitness (Lowest Slope) 0.98 1.44 47%
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Abstract. Simulations have recently been considered as data generators
for machine learning. However, the high computational cost associated
with them requires a smart sampling of what to simulate. We distinguish
between two scenarios of simulation data mining, which can be optimized
with active learning and active class selection.

Keywords: Simulation · Active learning · Active class selection.

1 Introduction
Simulations are powerful tools for investigating the behavior of complex systems
in science and engineering. Recently, there is an increase of attention towards
the employment of simulated data in machine learning, an integration that is
sometimes termed simulation data mining [11,2,4,12]. Its applications range from
integrated circuit design [13] over milling processes [9], mechanized tunneling [8],
robotized surgery [7], and cancer treatment [5] to astro-particle physics [3].

The goal of simulation data mining is to reason about a real system under
study by learning from data which is generated by a simulation of that system.
The benefit of this paradigm is that less or even no data is required from the
actual system. Acquiring “real” data would often be costly or even be infeasible,
e.g. if the actual system is still in the design phase and not yet deployed. Oppo-
sitely, simulations have the potential to provide large volumes of data, only at the
expense of their computation. However, the need for accurate simulations often
leads to complex simulation models (e.g. 3D numerical Finite-Element simula-
tions), which result in high costs associated with data generation. The time and
computational resources required by simulations motivate the active sampling of
data, more precisely active learning (AL) [10] and active class selection (ACS)
[6]. Both of these frameworks seek to select the minimal amount of training data
while maximizing the performance of a prediction model trained with that data.
In this short paper, we argue that there are two different strategies for the simu-
lation of training data which distinctively correspond to AL and ACS. In fact, a
simulation may either generate labels from a set of input features [11,12,13,2,9,8]
or it may generate feature vectors from input labels [7,1]. The need for cost effi-
ciency thus makes simulation data mining an imminent application scenario for
methods from AL and from ACS.
* This work has been supported by Deutsche Forschungsgemeinschaft (DFG) within

the Collaborative Research Center SFB 876. “Providing Information by Resource-
Constrained Data Analysis”, projects C3 and B3. http://sfb876.tu-dortmund.de

c© 2019 for this paper by its authors. Use permitted under CC BY 4.0.
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2 Active Sampling from Simulated Data

Every simulation is based on some kind of generative model. Such a simulation
model may comprise analytical, geometric, agent-based, and probabilistic mod-
eling approaches which represent the dynamics of the studied system. Namely,
such a model represents how the state s ∈ S of the system evolves over time:

Simρ(s t, ∆t) = s t+∆t , 0 ≤ t ≤ T, (1)

where ρ ∈ P is a vector of simulation parameters, which can be directly related
to the parameters of the real system or process. In this view, the simulation
is a fixed black box which encodes domain knowledge up to minor details. In
the following, we distinguish between two scenarios in which machine learning
models are trained on simulated data.

2.1 Forward Learning Scenario

In the first learning scenario, the simulation model has the same direction of
inference as the machine learning model f : X → Y that is to be trained. This
means that the initial state s0 ∈ S of the simulation is a function of the feature
vector x ∈ X . The simulation then comprises multiple steps s1 ∈ S, s2 ∈ S, . . .
until a label y ∈ Y is obtained in the the final state sT ∈ S. Thus, the simulation
and the machine learning model both infer y from x, as illustrated in Fig. 1.
This learning scenario is probably the most common to date, being approached
for example in [11,12,13,2,9,8].

s0 s1 . . . sT

Simρ Simρ Simρ

x y
f

Fig. 1. In the forward scenario, the prediction model f : X → Y has the same direction
of inference as the simulation Simρ from Eq. 1.

Since the mappings from x to s0 and from sT to y are given by the problem
statement, we could use the simulation to predict y directly—without learning
another model f from simulated data. However, simulations often encompass
even those details of the analyzed system that are only minor for the prediction
task at hand. The computational resources required to compute data from such
a precise model limit the resource efficiency of the simulation with respect to
the prediction task. It is therefore often not feasible to run a simulation for
prediction, particularly for resource-aware or real-time applications. Machine
learning can then be used to build surrogate models which solve the prediction
task efficiently [9,8]. The simulation can take the role of an oracle oAL : X → Y,
so that an AL technique can optimize the data being simulated.
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2.2 Backward Learning Scenario
In the second scenario, the goal is to learn a prediction model of the “opposite
direction” of the simulation. In other words, the prediction task to find the
causes of observed effects. This task is modeled by the label y defining the
input of the simulation and a corresponding feature vector x being produced,
as outlined in Fig. 2. Since the machine learning model now solves another
task than the simulation, it is able to achieve analysis goals which can not be
achieved with the simulation alone. This second scenario is applied, for example,
in robotized surgery, where the force which caused a deformation is predicted [7],
or in astro-particle physics, where particle properties are predicted from indirect
observations [1,3].

s0 s1 . . . sT

Simρ Simρ Simρ

xy
f

Fig. 2. In the backward scenario, the goal is to predict causes of observed effects. Thus,
the direction of infence differs between Simρ and f .

Other than in the forward scenario, a “backward” simulation can not predict
y from x. It can thus not be used as an AL oracle. However, we can use the
simulation as the data generator oACS : Y → X that is assumed by ACS. One
reason for distinguishing the two scenarios is thus the applicability of active
sampling techniques. AL is only amenable in the forward scenario, ACS only in
the backward case.

2.3 Active Sampling with Simulation Parameters
The goal of AL and ACS is to reduce the cost of training data generation.
Starting from an initial data set, the simulation candidates are scored according
to a selection criterion s and the best candidates are being simulated until a
stopping criterion is met after some iterations. In this framework, AL scores
feature vectors and ACS—in contrast—scores labels.

sAL : X → R
sACS : Y → R

Having a simulation, we can generalize this concept to a scoring of all simula-
tion inputs, also comprising the auxiliary simulation parameters ρ ∈ P. Namely,
AL can score each (x,ρ) and ACS can score each (y,ρ) to have a higher chance
of identifying the relevant input sub-spaces and to improve efficiency further.

3 Conclusion
We distinguish between two scenarios in which machine learning models are
trained from simulated data. Our distinction corresponds to the applicability
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of AL and ACS, a property not previously detailed in simulation data science.
Moreover, we conceive that active sampling techniques can be improved by ac-
counting for the parameters of the simulation.

In upcoming work, we will further elaborate the paradigm of learning from
simulations. In this regard, we deem data quality a particular issue because
simulated data does not always picture the real system exactly. This problem
may be tackled with transfer learning or domain adaptation techniques, which
make the differences between multiple data sources—the simulation and the real
system—explicit. Therefore, we consider simulation data science a promising use
case also for combinations of active sampling and transfer learning.
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Abstract. Active stream learning is frequently used to acquire labels
for instances and less frequently to determine which features should be
considered as the stream evolves. We introduce a framework for active
feature selection, intended to adapt the feature space of a polarity learner
over a stream of opinionated documents. We report on the first results of
our framework on substreams of reviews on different product categories.

Keywords: Active Feature Acquisition · Opinion Stream Classification

1 Introduction

Opinion stream classification algorithms assign a polarity label to each arriving
opinionated document. The feature space over the stream may change though,
e.g. when new product appear and the words/phrasing used by customers who
reviewed them changes. Feature space adaption can benefit from an active learn-
ing approach, where a human expert specifies the features of importance.

Contardo et al. [5] use reinforcement learning to acquire features, and also
consider feature acquisition cost. Huang et al. [8] take uncertainty into account.
The “sequential feature acquisition framework” of Shim et al. [12] acquires one
feature at a time until the desired model confidence is achieved. These approaches
are for static data, though, which are processed in their entirety to build the
model. In the stream context, Barddal et al. [2] survey methods that detect fea-
ture drift and select features for learning, under the assumption that all features
are known in advance. We do not make this assumption. Rather, whenever drift
is detected, we use words from recent documents and rebuild the feature space.

We propose a framework for active feature selection on a stream. It consists
of: an active learner of features (ALF) that ranks features on importance; a rec-
ommender (RALF) that invokes ALF and then recommends a feature subspace
to be replaced with the new features; a drift monitor that invokes RALF when
model quality decreases. In the next section we present our framework. Section
3 contains our first results. Section 4 concludes our study.

c© 2019 for this paper by its authors. Use permitted under CC BY 4.0.
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2 Workflow Over the Document Stream

Our framework slides a window W of n epochs (here: weeks) over the stream,
learning on n epochs and testing on the epoch n + 1.

Module ALF for Feature Ranking: Our active feature selector ALF ranks features
on importance. Feature ranking methods include mutual information, informa-
tion gain, document frequency thresholding, chi-square and document frequency
thresholding (DFT) as discussed by Basu et al [3], Distinguishing Feature Selec-
tor (DFS), Odds Ratio and Normalized Difference Measure (NDM) as studied
in [1], Gini-index, signed chi-square and signed information gain [10], the strat-
ified feature ranking method of [4] and the approach proposed by [6]. We opted
for the Distinguishing Feature Selector (ALF-DFS) and the Gini (ALF-Gini)
because they were found to have the most competitive performance [14].

Module RALF for Feature Subspace Recommendation: The recommender takes
as input the size M of the subspace to be replaced and invokes ALF for feature
ranking. Currently we use M = FeatureSpaceSize

2 . We have four variants of RALF:

– Baseline: invokes ALF-Gini on the data inside the current window
– Oracle-Random: picks randomly M features from the feature space of the

next epoch (the epoch n + 1, i.e. the first epoch in the future)
– Oracle-Gini: invokes ALF-Gini on epoch n+1 and returns the top-M features
– Oracle-DFS: similar to ALF-Gini, but invokes ALF-DFS on epoch n + 1

Hence, the Oracle variants simulate an expert who knows which features will
become important in the immediate future. We use the top-M of these features
to replace the least important ones of the current feature space, thus preserving
the presently informative features still.

Stream Classification Core: The opinion stream learner replaces the least in-
formative features (according to ALF’s ranking) with the features suggested by
RALF. It re-learns on the current window and uses the next epoch for testing.
Then, the window shifts by one epoch, forgetting the least recent one.

Drift-driven Feature Space Update: Drift monitor that invokes RALF if and only
if drift occurs. For drift detection we use the method of Gama et al [7].

3 Experiments and Results

We compared the RALF variants to a default model that does not change the
feature space. We performed prequential evaluation, aggregated the SGD log
loss values every two months. We used Friedman test with Iman-Davenport
modification, rejecting the H0 for p-values ≤ 0.01, and then applied Nemenyi
post-hoc test. All experiments and results are in [13].
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Data Setup: We use the “clothing, shoes and jewelry” reviews (substream C),
“health and personal care” (substream H) and “sports and outdoors” (S) from
the Amazon data set of [9] (http://jmcauley.ucsd.edu/data/amazon/), from
01/2011 to 01/2013. There were very few reviews before 2011 and a steep in-
crease of positive ones from 2013 on: this product-independent drift calls for
conventional classifier adaption, which is beyond our scope. We map ratings 1
and 2 to “Negative”, 4 and 5 to “Positive”, and 3 to “Neutral”.

Feature Drift Imputation: We start and stop the substream of each product
category at specific time points (see Fig. 1). Hence, product-specific words appear
only at given time intervals. We slide a window of 5 weeks in one-week steps over
this stream. We build an initial model from the first three weeks, i.e. only from
substream C. The first drift occurs when substream H starts.

Fig. 1. One substream per product category, shifted over time to simulate feature drift

Setup of the Components: As classification core we use Stochastic Gradient
Descent (SGD) of scikit-learn (alpha = 0.001, l2 penalty and hinge loss). For text
preparation, we use the components of [11]. We build the feature space using bag-
of-words (“words”: 3-grams) and TFIDF, and invoke the dictionary vectorizer of
scikit-learn. We vary the feature space size Mfull = 500, 1000, 5000, 10000, 15000,
so RALF replaces the M = Mfull/2 least important features.

Results: The default model always had inferior performance. Hence updating the
feature space is beneficial as response to drift caused through the introduction
of new products.Oracle-DFS performed best. Oracle-Gini was within the critical
distance to it. Oracle-Random improved as the feature space size increased.

The Baseline, which uses ALF-Gini without benefiting from an Oracle, is
comparable to Oracle-Gini and Oracle-Random, It is better than the default
model except for Mfull = 500 (where it is within the critical distance from the
default model). Hence, ALF-Gini can improve model performance by replacing
the least informative features in the current window, when feature drift occurs.

4 Conclusions

We presented an active feature selection framework for a stream of opinionated
documents. Upon drift detection, our framework re-ranks the features with help
of the Oracle and replaces the least informative old features with the most in-
formative new ones. We evaluated our framework by simulating topic drift. We
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found that replacing a feature subspace in the presence of drift is beneficial,
even if there is no Oracle. We next plan to vary the size and position of the fea-
ture subspace to be replaced. Replacing the currently most informative features
instead of the least informative ones might be better under concept shift.
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