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Motivation



Sequence labelling

• Deep learning has shown supreme results in sequence labelling.
• Typically requires a large training data set.
• Requires a series of token-level labels for a whole sequence to be available.

• Goal: Reduce labelling effort.
• Use active learning to label the most informative sequences.
• Use semi-supervised learning to avoid labelling of ”easy” elements.
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Proposed approach



Proposed approach

• Deep neural networks are typically over-confident ⇒
• Bayesian inference approximation using Monte Carlo Dropout.

• Perform multiple inferences using different dropout masks to obtain PMC
M (y |x)

• Adapt approaches of uncertainty sampling designed for sequence labelling.
• Use pseudo-labelling (self-training) to label elements in which the model is confident.
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Utility function adaptations

• Monte Carlo approximation of token entropy:

φTE
MC(x) = −1

L

L∑
l=1

K∑
k=1

(
PMC

M (yl = k|x) log PMC
M (yl = k|x)).

• Monte Carlo approximation of the sequence entropy:

φNSE
MC (x) = − 1

C
∑

ŷ∈N MC

PMC
M (ŷ |x)logPMC

M (ŷ |x),

where NMC = {y1, y2, ...} is set of all sequences predicted by Monte Carlo sampling.
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Semi-supervised active learning
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Experimental setup



Experimental setup

• Natural language processing:
• named entity recognition (NER),
• part of speech tagging (POS),
• chunking (CHUNK).

• Benchmark dataset CoNLL 2003 (english).
• Two state of the art models:

• BI-LSTM-FCN
• BI-LSTM-CRF

• Training data randomly split into labelled and unlabelled in 1:9 ratio.
• Experiments:

• Active learning
• limited number of tokens,
• unlimited number of tokens.

• Semi-supervised learning
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Results



Query strategies comparison

Task type NER POS
Random 76.5 78.1
Least Confident 76.9 80.8
MC Total Token Entropy 76.9 80.2
MC Sequence Entropy 77.5 82.0

Table 1: Query strategies comparison (F1 score)
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Query strategies comparison
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Semi-supervised learning

Task type NER POS
Allowed error 0% 1% 0% 1%
Least confident 77.3 84.3 72.4 82.5
Token entropy 79.5 83.7 72.2 77.9
Total token entropy 75.5 83.5 71.2 81.6

Table 2: Relative amount of pseudo-labeled tokens - BI-LSTM-CRF
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Summary and future steps



Summary

• Summary:
• Two uncertainty sampling query strategies for deep neural network models.
• Semi-supervised learning can rapidly reduce labelling effort for model with CRF on top.

• Future steps:
• video processing,
• study usability of query by committee and expected gradient length,
• study other approaches to Bayesian recurrent neural networks.
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Thank you for your attention.
Questions?

tomas.sabata@fit.cvut.cz
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