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Motivation



Sequence labelling
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e Deep learning has shown supreme results in sequence labelling.

e Typically requires a large training data set.

e Requires a series of token-level labels for a whole sequence to be available.

e Goal: Reduce labelling effort.

e Use active learning to label the most informative sequences.
e Use semi-supervised learning to avoid labelling of "easy” elements.
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Proposed approach



Proposed approach

e Deep neural networks are typically over-confident =
e Bayesian inference approximation using Monte Carlo Dropout.

e Perform multiple inferences using different dropout masks to obtain PMC(y|x)
e Adapt approaches of uncertainty sampling designed for sequence labelling.

e Use pseudo-labelling (self-training) to label elements in which the model is confident.
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Utility function adaptations

e Monte Carlo approximation of token entropy:

L K
—= 2> (PI(yi = k|x) log P (ys = K|x)).
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e Monte Carlo approximation of the sequence entropy:

SNSE () = — = Z PMC(§1x)logPME (9]x),

yeNMC

where NMC = Ly, y, ...} is set of all sequences predicted by Monte Carlo sampling.
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Semi-supervised active learning
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Experimental setup



Experimental setup

e Natural language processing:

e named entity recognition (NER),

e part of speech tagging (POS),

e chunking (CHUNK).
Benchmark dataset CoNLL 2003 (english).
Two state of the art models:

e BI-LSTM-FCN
e BI-LSTM-CRF

Training data randomly split into labelled and unlabelled in 1:9 ratio.

e Experiments:
e Active learning

e limited number of tokens,
e unlimited number of tokens.

e Semi-supervised learning
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Results




Query strategies comparison

Task type NER | POS
Random 76.5 | 78.1
Least Confident 76.9 | 80.8

MC Total Token Entropy | 76.9 | 80.2
MC Sequence Entropy 77.5 | 82.0

Table 1: Query strategies comparison (F1 score)
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Semi-supervised learning

Task type NER POS

Allowed error 0% | 1% | 0% | 1%
Least confident 773 843|724 825
Token entropy 795 837|722 779
Total token entropy | 75.5 83.5 | 71.2 81.6

Table 2: Relative amount of pseudo-labeled tokens - BI-LSTM-CRF
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Summary and future steps




Summary

e Summary:

e Two uncertainty sampling query strategies for deep neural network models.
e Semi-supervised learning can rapidly reduce labelling effort for model with CRF on top.

e Future steps:

e video processing,
e study usability of query by committee and expected gradient length,
e study other approaches to Bayesian recurrent neural networks.
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Thank you for your attention.
Questions?
tomas.sabata@fit.cvut.cz
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