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Overview

@ What is feature selection stability and why is instability a problem ?
@ State of the literature

@ Contribution: explicit compromise between accuracy and stability
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What is feature selection stability ?

Instability

@ Features can be

Feat. sel.
analyzed by experts
— Fs1 to gain domain

knowledge.
@ Instability reduces
the interpretability of

O — 2 the predictive
2 models.

@ And the trust of

domain experts
|[FS1NFS2[ ~ 0= stab | towards the selected

features.
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State of the literature

Increasing stability
@ Ensemble feature selection [Saeys et al., 2008, Abeel et al., 2010]
@ Instance weighting [Somol and Novovicova, 2010]

@ Model selection

= No fine control of the accuracy-stability trade-off.

Stability measure [Nogueira et al., 2017]

T d : number of input features
3 2.f—1Pr(1 — pr)

- - k : mean number of selected features
a*(1—3)

$=1-

pr : feature f selection frequency
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Logistic RFE

n
L= Z log(1 4 e W=i)) 1 X||w|
i=1

@ Drops a fraction of the least significant features at each step

@ Until the desired number of features is met
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logistic RFE

n
L= log(1+ e ™))+ Agjw||
i=1

@ Drops a fraction of the least significant features at each step
@ Until the desired number of features is met

A feature f with a lower B¢ has a higher probability to be selected and
vice-versa = control the accuracy-stability tradeoff by tuning 3.
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Results (prostate dataset, d=12600, n=102)
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Confidence intervals

0.90-
0.85-
>
[&]
g
5 0.80-
Q
&)
<C
0.75-
0.70 -
0.4 0.5 0.6 0.7 0.8 0.9
Stability

Hamer and Dupont (UCLouvain) Biased RFE September 16, 2019 8 /11



Transfer learning

Sometimes, one wants to find similar feature subsets for different tasks. J
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Paper weighting scheme

Stability increase if f is taken: 2ps — 1 = Bf o exp(—a * pr)

Hamer and Dupont (UCLouvain) Biased RFE September 16, 2019 9/11



Transfer learning: results
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Conclusion
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@ Extension to multi-task selection.

o Apply differential shrinkage to other losses or regularizations (Elastic
Net penalty, deep feature selectors, ...).
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