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1. Introduction
In recent years, deep learning has shown supreme results in many sequence labelling tasks, especially in natural language processing. However, it
typically requires a large training data set compared with statistical approaches. In areas where collecting of unlabelled data is cheap but labelling
expensive, active learning can bring considerable improvement. Sequence learning algorithms require a series of token-level labels for a whole sequence
to be available during the training process. Annotators of sequences typically label easily predictable parts of the sequence although such parts could be
labelled automatically instead. In this paper, we introduce a combination of active and semi-supervised learning for sequence labelling.

2. Sequence labelling
A sequence labelling model assigns categorical
labels to all elements of a sequence of observed
values. In general, it considers the optimal la-
bel for a given element to be dependent on the
choices of nearby elements.

3. Underlying models
The approach is designed for two neural network
architectures. These architectures use LSTM
RNN and differ in the last layer.
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Figure 1: BI-LSTM-FCN
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Figure 2: BI-LSTM-CRF

4. Deep Bayesian Semi-Supervised Active Learning
Our approach utilizes an approximation of Bayesian inference for neural nets using Monte Carlo
dropout[1]. The approximation yields a measure of uncertainty that is needed in many active learning
query strategies. We propose Monte Carlo token entropy and Monte Carlo N-best sequence entropy
strategies. Furthermore, we use semi-supervised pseudo-labelling to reduce labelling effort.
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5. Experimental results
The proposed approach was evaluated on natural language processing tasks: named entity recogni-
tion (NER) and part of speech tagging (POS).
Table 1: Relative amount of pseudo-labelled tokens
Task type NER POS
Allowed error 0% 1% 0% 1%
Least confident 77.3 84.3 72.4 82.5
Token entropy 79.5 83.7 72.2 77.9
Total token entropy 75.5 83.5 71.2 81.6

Table 2: Query strategies - F1 score
Task type NER POS
Random 76.5 78.1
Least Confident 76.9 80.8
MC Total Token Entropy 76.9 80.2
MC Sequence Entropy 77.5 82.0
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6. Conclusions
1. The proposed query strategies have shown

a substantial improvement over the until
now used strategy in sequence labelling
with deep neural networks, least confident.

2. Semi-supervised learning can rapidly re-
duce labelling effort for BI-LSTM-CRF.
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