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Introduction

I Feature selection (FS) is the act of selecting a small and relevant subset
of input features, generally to be included in a predictive model.
. Reduces overfitting⇒ improves prediction performance.
. Learns fast, compact and easy-to-interpret models.

I Selection instability: selected feature subsets may change drastically
after marginal changes in the data.

|FS1 ∩ FS2| ≈ 0⇒ stab ↓
. Features can be analyzed by experts to gain domain knowledge.
. Instability reduces the interpretability of the predictive models.
. And the trust of domain experts towards the selected features.

State of the literature

I Increasing stability
. Ensemble feature selection : selects features that are selected the most

accross different selection runs.
. Instance weighting : weights training instances according to their

importance to feature evaluation.
. Model selection: takes stability into account in the fitting of the

meta-parameters.

⇒ No fine control of the accuracy-stability trade-off.
I Stability measure [1]
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d : number of input features

k : mean number of selected features

pf : feature f selection frequency

Biased Logistic RFE

L =
n∑

i=1

log(1 + e−yi∗(w∗xi)) + λβ||w||2

I Drops a fraction of the least significant features at each step.
I Until the desired number of features (k) is met.
I A feature f with a lower βf has a higher probability to be selected and

vice-versa⇒ control the accuracy-stability tradeoff by tuning β.
I Paper: βf ∼ Γ(α, 1)
I Results on Prostate (n=102, d=12600, k=20):
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I Domain experts can thus tune α and choose any Pareto-optimal
compromise.

Confidence intervals on HV

I Possible (see paper) to define ellipsoidal confidence regions for each
Pareto-optimal trade-off⇒ use the most dominated and most dominant
point of each ellipse to compute the bounds of the CI.

Transfer learning

I Sometimes, one wants to find similar feature subsets for different tasks.
I Transfer learning: tasks are ordered

FS1 FSi FSm

I Stability increase if feature f is taken at task number i :
2pf − 1 with pf the selection frequency of feature f in task [0, i[.

I Paper: βf ∝ exp(−α ∗ pf )⇒ prioritize more features which selection
would increase more the stability.

Independent selection

Biased RFE

α

Future work

I Extension to multi-task selection.
I Apply differential shrinkage to other losses or regularizations (Elastic Net

penalty, deep feature selectors, ...).
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