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Introduction

» Feature selection (FS) is the act of selecting a small and relevant subset
of input features, generally to be included in a predictive model.
> Reduces overfitting = improves prediction performance.
> Learns fast, compact and easy-to-interpret models.

» Selection instability: selected feature subsets may change drastically
after marginal changes in the data.
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> Features can be analyzed by experts to gain domain knowledge.
> Instability reduces the interpretability of the predictive models.
> And the trust of domain experts towards the selected features.

State of the literature

» Increasing stability

> Ensemble feature selection : selects features that are selected the most
accross different selection runs.

> Instance weighting : weights training instances according to their
importance to feature evaluation.

> Model selection: takes stability into account in the fitting of the
meta-parameters.

—> No fine control of the accuracy-stability trade-off.
» Stability measure [1}
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d : number of input features
k : mean number of selected features
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pr : feature f selection frequency
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Drops a fraction of the least significant features at each step.
Until the desired number of features (k) is met.

A feature f with a lower 3¢ has a higher probability to be selected and
vice-versa = control the accuracy-stability tradeoff by tuning 3.

Paper: 3¢ ~ N (a, 1)
Results on Prostate (n=102, d=12600, k=20):
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HV = 0.8223--[0.8144,0.8302]

Hypervolume: fraction of the objective
space that is dominated by the method.
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» Domain experts can thus tune @ and choose any Pareto-optimal
compromise.
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Confidence intervals on HV

Possible (see paper) to define ellipsoidal confidence regions for each
Pareto-optimal trade-off = use the most dominated and most dominant
noint of each ellipse to compute the bounds of the Cl.
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Transfer learning

» Sometimes, one wants to find similar feature subsets for different tasks.
» Transfer learning: tasks are ordered
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» Stability increase if feature f is taken at task number i:
2ps — 1 with pr the selection frequency of feature f in task [0, i].

> Paper: Bf x exp(—a * pr) = prioritize more features which selection
would increase more the stability.
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HV = 0.8317--[0.8297,0.8337]

HV = 0.7889--[0.7834,0.7944]
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Future work

» Extension to multi-task selection.

» Apply differential shrinkage to other losses or regularizations (Elastic Net
penalty, deep feature selectors, ...).
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