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Preface

Science, technology, and commerce increasingly recognize the importance of ma-
chine learning approaches for data-intensive, evidence-based decision making.

This is accompanied by increasing numbers of machine learning applica-
tions and volumes of data. Nevertheless, the capacities of processing systems
or human supervisors or domain experts remain limited in real-world applica-
tions. Furthermore, many applications require fast reaction to new situations,
which means that first predictive models need to be available even if little data is
yet available. Therefore approaches are needed that optimize the whole learning
process, including the interaction with human supervisors, processing systems,
and data of various kind and at different timings: techniques for estimating the
impact of additional resources (e.g. data) on the learning progress; techniques
for the active selection of the information processed or queried; techniques for
reusing knowledge across time, domains, or tasks, by identifying similarities and
adaptation to changes between them; techniques for making use of different types
of information, such as labeled or unlabeled data, constraints or domain knowl-
edge. Such techniques are studied for example in the fields of adaptive, active,
semi-supervised, and transfer learning. However, this is mostly done in separate
lines of research, while combinations thereof in interactive and adaptive ma-
chine learning systems that are capable of operating under various constraints,
and thereby address the immanent real-world challenges of volume, velocity and
variability of data and data mining systems, are rarely reported. Therefore, this
combined tutorial and workshop aims to bring together researchers and practi-
tioners from these different areas, and to stimulate research in interactive and
adaptive machine learning systems as a whole.

This workshop aims at discussing techniques and approaches for optimizing
the whole learning process, including the interaction with human supervisors,
processing systems, and includes adaptive, active, semi-supervised, and transfer
learning techniques, and combinations thereof in interactive and adaptive ma-
chine learning systems. Our objective is to bridge the communities researching
and developing these techniques and systems in machine learning and data min-
ing. Therefore we welcome contributions that present a novel problem setting,
propose a novel approach, or report experience with the practical deployment of
such a system and raise unsolved questions to the research community.

All in all, we accepted five regular papers (7 papers submitted) and 3 short
papers (4 submitted) to be published in these workshop proceedings. The authors
discuss approaches, identify challenges and gaps between active learning research
and meaningful applications, as well as define new application-relevant research
directions.

We thank the authors for their submissions and the program committee for
their hard work.

September 2017 Georg Krempl, Vincent Lemaire, Robi Polikar
Bernhard Sick, Daniel Kottke, Adrian Calma
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Invited Talk :
Ensemble Learning from Data Streams with
Active and Semi-Supervised Approaches

Bartosz Krawczyk

Department of Computer Science
Virginia Commonwealth University, Richmond, VA

bkrawczyk@vcu.edu

Abstract. Developing efficient classifiers which are able to cope with big
and streaming data, especially with the presence of the so-called concept
drift is currently one of the primary directions among the machine le-
arning community. This presentation will be devoted to the importance
of ensemble learning methods for handling drifting and online data. It
has been shown that a collective decision can increase classification accu-
racy due to mutually complementary competencies of each base learner.
This premise is true if the set consists of diverse and mutually comple-
mentary classifiers. For non-stationary environments, diversity may also
be viewed as a changing context which makes them an excellent tool
for handling data shifts. The main focus of the lecture will be given to
using these mentioned advantages of ensemble learning for data stream
mining on a budget. As streaming data is characterized by both massive
volume and velocity one cannot assume unlimited access to class labels.
Instead methods that allow to reduce the number of label queries should
be sought after. Recent trends in combining active and semi-supervised
learning with ensemble solutions, such as online Query by Committee or
Self-Labeling Committees, will be presented. Additionally, this talk will
offer discussion on emerging challenges and future directions in this area.
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Challenges of Reliable, Realistic and
Comparable Active Learning Evaluation

Daniel Kottke1, Adrian Calma1, Denis Huseljic1,
Georg Krempl2, and Bernhard Sick1

1) University of Kassel
Wilhelmshöher Allee 73, 34112 Kassel, Germany

{daniel.kottke,adrian.calma,bsick}@uni-kassel.de

2) Otto-von-Guericke University Magdeburg
Universitätsplatz 2, 39106 Magdeburg, Germany

georg.krempl@ovgu.de

Abstract. Active learning has the potential to save costs by intelligent
use of resources in form of some expert’s knowledge. Nevertheless, these
methods are still not established in real-world applications as they can
not be evaluated properly in the specific scenario because evaluation
data is missing. In this article, we provide a summary of different evalu-
ation methodologies by discussing them in terms of being reproducible,
comparable, and realistic. A pilot study which compares the results of
different exhaustive evaluations suggests a lack in repetitions in many
articles. Furthermore, we aim to start a discussion on a gold standard
evaluation setup for active learning that ensures comparability without
reimplementing algorithms.

Keywords: Evaluation, Active Learning, Classification, Semi-supervised
Learning, Data Mining

1 Introduction

The field of machine active learning (AL) investigates how a learning algorithm
can learn to solve problems (e.g., classification or regression problems) more
effectively by exploiting interactions with humans (e.g., experts in a specific
application field) or simulation systems which are abstractly modeled as an or-
acle [1] (Fig. 1). In many application domains, it is unproblematic to collect
unlabeled data, but gathering labels may be complicated, time-consuming, or
costly [18]. Furthermore, AL is based on the assumption that by allowing the
learner to be curios (i.e., it is allowed to choose the data from which it learns),
it may learn faster [39].

Pool-based AL [29] usually starts with an initially empty or very sparsely
labeled set of samples, a large pool of unlabeled samples (candidates), and iter-
atively queries for new labels from instances of the candidate pool by “asking
the right questions”. For example, in every learning cycle the oracle is asked to
provide labels for the most “informative” samples based on a selection strategy.

2
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Thereby, it aims to improve the performance of the learning model as fast as
possible. After the labels are added, the knowledge model is updated.

In this article, we focus on three critical aspects of AL evaluation which are
underrepresented in current AL research:

– Reliable Evaluation: Reliable evaluation results require a robust and re-
producible evaluation methodology. Hence, the methodology should be de-
scribed in detail and should be robust to varying seeds or shuffled data.

– Realistic Evaluation: Evaluating an AL algorithm in a lab setting (the
lack of labels is just simulated) is not realistic. Often, implications for the
real world do not hold. Hence, AL methods are not very common in industrial
applications. We will discuss the challenges of a real-world application.

– Comparable Evaluation: Current evaluation methodologies vary a lot re-
garding its evaluation type, performance measure, number of repetitions,
etc. Ideally, presented results are directly comparable with others. Hence,
this article aims to initiate a discussion for a standardized AL evaluation
gold standard.

The article starts with a general overview of components taking part in an
AL cycle (Sec. 2). Next, we discuss aspects of reliable evaluation (Sec. 3) and
compare two methodologies in a pilot study (Sec. 4). In Sec. 5, we present un-
realistic assumptions for real-world applications. Finally, we conclude the work
and propose an outlook on how comparable evaluation could be made possible.

2 Active Learning in Classification Tasks

The learning cycle of AL (see Fig. 1) consists of three main components: In
pool-based AL for classification tasks, we have a selection strategy, an oracle,
and a classifier. The selection strategy selects the instances from the candidate
pool to be labeled by the oracle such that the classifier can learn a well-suited
model. This procedure repeats until a stopping criterion is reached. In AL eval-
uation, we normally investigate the performance of the selection strategy. Using
an omniscient oracle and a pre-trained classifier, we can assure that performance

oracle (expert)

machine learning model 
(classifier)

labeled
training set

candidate
pool

selection strategy

Fig. 1. Pool-based active learning cycle [39]

Challenges of Reliable, Realistic and Comparable Active Learning Evaluation
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differences are solely induced by the selection of training instances from the can-
didate pool. Changing the classifier (or the parameters of the classifier) within
different AL systems might lead to falsified results because of the high interde-
pendence between the three components.

Comparing multiple classifiers in combination with AL, the selection strategy
should be fixed. Comparing both, classifiers and selection strategies, one should
run every combination. Unfortunately, some selection strategies solely work with
specific classifiers or classifier types. Hence, it is not possible to compare these
selection strategies with their individual classifiers as performance differences
could be explained by the qualities of the classifiers and not the selection strat-
egy. To face this problem, we could learn multiple classifiers on the selected
samples. According to [42], this is subsumed under the term label reusability.
The authors propose to use the specific classifier for the active selection (se-
lector) and train additional classifiers for prediction (consumer). Although the
authors of [42] show that the suitability of selector-consumer pairings cannot
be estimated independently of the AL problem, we propose to run each selector
also as a consumer for evaluation.

3 Aspects of Reliable Evaluation

Reliable evaluation is robust and reproducible. Robustness in evaluation means
that changing seeds or the order of data points does not effect the results. In this
section, we will point out different aspects and discuss what is done in literature.

3.1 Repetitions and Hold-Out Evaluation

In AL, we are facing classification tasks with very few training instances. When
classifiers try to generalize from only a few training samples, their performance
might be very sensitive to small changes. Also, the performance probably varies
a lot depending on the concrete choice of instances to be labeled. Hence, lots of
repetitions are needed to get a reliable trend of the performance. In Fig. 2, we
clarify the nomenclature of different sets that might take part in AL.

In recent active learning articles, the number of repetitions varies between one
single training-evaluation set [49] to 100 different partitionings [26]. Therefore,
some authors use a k-fold cross validation [2, 5, 31] with solely one execution [31,
38] or multiple ones [2, 5]. Executing a k-fold cross validation multiple times

oracle (expert) machine learning model 
selection strategy

labeled
training setcandidate pool evaluation settuning set

initiali-
zation set

Fig. 2. Different sets used in literature for active learning.

Challenges of Reliable, Realistic and Comparable Active Learning Evaluation
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requires different seeds among the repetitions. Others [8, 21, 30, 46] use a simple
split with a fixed percentage (varying between 50% and 67%) for the candidate
pool and the rest, respectively, for the evaluation set. To get rid of random
effects, this is repeated multiple times.

In Sec. 4, we present a pre-study that shows the drawbacks of a single k-fold
cross validation and shows the importance of multiple repetitions.

3.2 Performance Measures

Active Learning is a dynamic process which improves its model by successively
adding labels to instances from the candidate pool. The aim of AL algorithms
is to achieve a high performance which improves as fast as possible. Hence, we
have two objectives [27, 39]:

1. achieve a high performance level (learn a good classifier) and
2. learn as fast as possible (save cost induced by annotations).

Applying Common Performance Measures to AL:

Depending on the learning problem, several performance measures [36] have been
used. Usually, accuracy or error [2, 6] are used for problems with balanced mis-
classification cost and class priors. For unbalanced data, measures like cost, F1-
Score, G-mean, Area under the Receiver Operating Characteristic-Curve (AU-
ROC) [17, 20] (see [21, 22, 30, 48]) or H-measure [19] are more sophisticated. Usu-
ally, these performance measures are then plotted over time (resp. the number
of acquired labels), which is then called learning curve (e.g., see Fig. 3).

As mentioned in the previous subsection, the results from multiple executions
should be included in the evaluation by plotting standard deviations or ideally
quartiles. An evaluation of means could also include the mean standard error
or mean quartiles which can be determined using bootstrapping [15]. Note that
quartiles are more exact as the distribution of performances given the number of
acquired labels is unlikely normally distributed because these random variables
are bounded (most of the time between 0 and 1).

The comparison of learning curves remains difficult as it is unclear how to
combine the two objectives from above. The easiest option is to present the result
for different points in time (e.g., early stage, mid stage, saturated stage) [26, 37].
Having fixed these time points, one can use comparison methods like in usual
classification tasks. Note that most often, these time points and the total number
of label acquisitions (when to stop learning) are chosen by the authors which
could bias the results. We recommend not to stop learning before most of the
AL algorithms have converged, and if possible, to also include the performance
of a classifier learned on all instances as a baseline.

In reliable evaluation, statistical testing plays a essential role. Nevertheless,
one should be reminded that statistical test only show if the results may also
be explained by random artifacts [33], and do not show the real superiority of
one’s method. Nuzzo [33] claims that results should not only be reported by
their statistical significance but also their effect size. Typically, statistical tests

Challenges of Reliable, Realistic and Comparable Active Learning Evaluation
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(like the t-test or the Wilcoxon signed rank test [47]) assume to have i.i.d. ran-
dom variables. Hence, the compared performance values should be drawn from
the different training-evaluation combinations and not from different time points
because these performance values are highly correlated and therefore not inde-
pendent. One also could argue that even the performances across the repetitions
are not independent because training and/or evaluation sets might overlap. Many
use a t-test for comparing the tendencies of the mean between two algorithms [8,
21]. Due to the assumption of the mean being normally distributed, it might be
better to use a parameter-free test like the Wilcoxon signed rank test [8, 22, 26,
41]. To test if an algorithm is significantly better across datasets, the Wilcoxon
signed rank test might also be a good choice. An alternative to statistical testing
is to present the number of won/lost trials using a simple pairwise comparison
between the performances of two algorithms [26].

Active Learning Specific Performance Measures:

There also exist approaches to summarize the shape of the performance curve:
The easiest approach sums up all the performance values for each time point.
Often, this is called area under the learning curve [38] (also denoted as AUC1).
This measure is proportional to the mean and hence dependent on the length of
the AL process (i.e., the number of acquisitions which is often chosen manually).

More convenient is the deficiency score proposed by Yanik et al. [50]. This is
determined by calculating the area between the maximal performance line and
the actual learning curve which they call α for algorithm A and β for algorithm
B. The deficiency of A with respect to B is then calculated using the following
equation:

deficiency(A,B) =
α

α+ β
(1)

Another measure to calculate how fast the AL algorithm learns (2nd objec-
tive) is the Data Utilization Rate (DUR) by Reitmaier et al. [38]. They first
compute the target accuracy defined as the mean (considering the performances
between 80% and 100% of the total number of acquired labels) from the random
strategy. The DUR is then the minimum number of samples needed by each
strategy to reach this target accuracy divided by the number of samples needed
by random.

3.3 Initialization of Active Learning

Some papers propose to initialize their AL cycle with some labels to be compati-
ble to state-of-the-art implementations or as an essential part of their algorithm.
The number of initialization labels varies between no label at all and 10% [30].
This choice is highly dependent on the dataset and the proposed algorithm.
Unfortunately, it is often not described, how the specific values have been de-
termined (or tuned), although this is essential for the method to succeed or
fail.

1 We do not recommend the abbrev. AUC because it can be mixed up with AUROC

Challenges of Reliable, Realistic and Comparable Active Learning Evaluation
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The number of initial labels is relatively small when initialization is done
due to compatibility issues [7, 13, 25, 37]. In some SVM implementations, the
classifiers need one instance per class to predict labels. Hence, some authors
added a fixed number of instances per class [43, 49, 50, 37] although this is not
possible in real applications as the class labels are unknown in advance. This is
even more relevant in datasets with unequal class priors as finding an instance
of the minority class is especially difficult [16].

In [30, 48], the initialization step is used to have a representative sample
for the dataset to find a broad decision boundary. Later, an uncertainty based
method is used to refine the boundary and improve the performance. In this
case, the number of samples used for initialization is critical for the active learn-
ing process. Especially, when the number of initial samples is varied across the
datasets [30], one should mention how this number has been tuned.

For transparent evaluation of the selection strategy, we propose that algo-
rithms with an initialization phase should be seen as a two step selection strat-
egy. In the first step, labeling candidates are chosen according to an initialization
strategy (e.g., random) which is stopped by a comprehensible stopping criterion.
Then, the real active learning method can proceed. As this initialization phase is
now part of the active learning algorithm it should be somehow evaluated (e.g.,
regarding robustness) and included in the learning curves [30, 37].

3.4 Parameter Tuning

Tuning parameters for classifiers is very difficult with only a few labels available.
Unfortunately, these tuning procedures are often not described in great detail.
Yanik et al. [50] used a grid search approach in an 5 fold cross validation after
each label acquisition to tune the parameters of the SVM. Similarly, Tuia et
al. [43] tune their parameters for their SVM. Both do not describe, on which data
this is executed. Using a hold out tuning set [13, 27] is not valid in AL unless these
additional labels are comprehensibly selected and included in the evaluation (i.e.,
considering them in the number of acquired labels in the learning curve). As in
passive classification tasks, it is strictly forbidden to tune the parameters using
the evaluation instances.

One could also argue that parameters should be adapted during learning as
the number of training instances is increased by AL which affects the capability
of generalization. This means, we either use a pre-trained mediocre classifier
because parameters are tuned for a specific labeling situation, or we re-calibrate
the parameters during learning which means that classifiers become different
across selection methods which also biases the results.

Another way is to use standard parameter with normalized features (e.g.
z-normalized) [25].

Challenges of Reliable, Realistic and Comparable Active Learning Evaluation
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3.5 Proposing an AL Evaluation Methodology

In order to achieve reliable results across selection strategies, we propose the
following methodology for AL evaluation:

– Use exactly the same robust classifier for every AL method when comparing
and try to sync the parameters of these classifiers.

– Capture the effect of different AL methods on multiple datasets using at
least 50 repetitions.

– Start with an initially unlabeled set. If you need initial training instances,
sample randomly and explain how to determine the number of samples.

– Use either a clear defined stopping criterion or enough label acquisitions
(sample until convergence).

– Show learning curves (incl. quartiles) with reasonable performance measures.
– Present pairwise differences in terms of significance and effect size (Wilcoxon

signed rank test).

4 Pilot Study: Influence of the Number of Repetitions

The major challenge of AL evaluation is to measure the effect of improvement
although the variance of results might be high: Especially in the early learning
stages (1%−10% of the data are labeled), the classification performance varies a
lot. This is where the differences across AL methods are highest. Hence, experi-
ments have to be repeated multiple times to yield reliable results as mentioned
before. In this section, we provide an exemplary evaluation methodology using
a 5-fold cross validation.

For these experiments, we solely used one dataset from the UCI machine
learning repository, named Mammographic Mass [3]. We chose this dataset as it
is a typical representative for an AL dataset regarding the number of instances
and features. For classification, we decided to use a robust classifier based on
Gaussian kernel density estimation, namely a Parzen Window Classifier (PWC).
Here, we only have one parameter: the bandwidth. In a pre-processing step, all
categorical data has been dichotomized and all features are linearly transformed
into [0, 1] space. Hence, we use a standard bandwidth for the Gaussian kernel of
the PWC of 0.2 as this seems to be reasonable. The AL algorithms are: Optimized
Probabilistic AL [26], uncertainty sampling (Uncer) [29], an optimized version
of expected error reduction from Chapelle (EER) [11], and random (Rand).

In 5-fold cross validation, we split the dataset D into 5 separate subsets
(D = D1∪. . .∪D5, Di∩Dj = ∅, i 6= j) to build disjoint candidates and evaluation
sets (Ti, Ei). In this subsection, we applied AL 5 times on four of the subsets and
evaluated the trained classifier on the left out subset.

Performing solely one complete 5-fold cross validation, as shown in Fig. 3, the
performances might vary a lot. Furthermore, the ranking of the final performance
(after 60 labels have been acquired) changes completely. The left evaluation
shows OPAL being the best, followed by Expected Error Reduction, Random,
and Uncertainty Sampling. Using another seed (right plot), the ranking is dif-
ferent: First OPAL, then Random, Uncertainty Sampling, and Expected Error

Challenges of Reliable, Realistic and Comparable Active Learning Evaluation
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Fig. 3. Results of a 5-fold cross validation: two executions with different seeds of a
complete 5-fold cross validation.
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Fig. 4. Mean results of 10 times repeated 5-fold cross validations
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Reduction. This clearly shows that a 5-fold cross validation evaluation for these
AL methods on this dataset using a PWC is not sufficient. Similar experiments
(not shown due to space restrictions) show that it is also true for other datasets
and other classifiers. Repeating this 5-fold cross validation 10 times as shown in
Fig. 4, provides much more stable results that are also comparable to the ones
from the following experiment.

5 Challenges of realistic evaluation

Publications from companies such as Microsoft [24, 35], IBM [32], or Mitsubishi [23]
show the growing interest in AL and its practical usefulness. AL has been suc-
cessfully applied to solve problems such as on-road vehicle detection [40] or in
recommender systems [28]. Unfortunately, these systems are highly specialized
and often cannot be easily used for related problems.

In contrast to lab experiments, real active learning approaches only have one
shot to learn. Hence, not the mean performance of multiple repetitions is of
interest but the pairwise comparisons of the different methods. Because of high
variances, it is still difficult to ensure a certain improvement of performance of
one selection algorithm against others. This is the reason for many researchers
arguing that random sampling is still a powerful baseline [10].

One of the main challenges to apply active learning in practice is to know
when to stop querying for new label information. By now, in real-world applica-
tions, the AL process stops when a given “labeling budget” has been consumed.
For example, in [40] the performance of the investigated AL approaches is done
after a fixed number of queried samples. But, this may be a waste of resources,
both in terms of time and money. Thus, the active learner should be able to
asses its own performance. Here, different problems occur: a) collecting a sep-
arate evaluation dataset by randomly sampling instances is expensive, b) the
collected data can not be used for performance estimation due to the sampling
bias [12]. Some research work has been done to analyze when to stop the AL pro-
cess besides estimating the performance directly [14, 34, 45]. It has been shown
that it is possible to identify when a learning process might be saturated, but
none provides information about the real classification performance.

In dedicated collaborative interactive learning (D-CIL) [9], different realistic
applications for AL have been outlined. It addresses AL processes that are in-
teractive – the information flows from humans to the active learner and vice
versa, collaborative – multiple domain experts collaborate, and dedicated – a
small number of benevolent domain experts interact with the active learner in
order to support the selection process. Even though the oracles are imperson-
ated by benevolent domain experts, they are still prone to error. Their labeling
performance may depend on the labeler’s experience, form of the day, or the
complexity degree of the learning problem. In case of an opportunistic active
learner [4], the oracles are not necessarily embodied by benevolent domain ex-
perts. Similar smart systems, simulation systems, or own sensors of the learning

Challenges of Reliable, Realistic and Comparable Active Learning Evaluation
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system may assemble together or separately the oracle. Furthermore, there is
high heterogeneity between these oracles, and their number is not fixed.

To summarize, AL research is mostly based on the following (limiting) as-
sumptions [9]: a) the classification problem is well-defined (i.e., the number of
classes and features are known in advance), b) labeled samples are available
at the beginning of the learning process, c) uniform labeling cost (i.e., identi-
cal labeling costs for all samples), d) the oracle is omnipresent and omniscient,
e) there exists a ground truth, based on which the performance of the active
learner is evaluated. However, these assumptions often do not hold in real-world
applications. Although, a large variety of specialized solutions is given which
solve single problems, there is further work necessary to apply methods in a
real-world setting. Here, a central aspect is the lack of comparability across dif-
ferent approaches which is a critical point for practitioners to apply AL in their
specific domain.

6 Conclusion and Outlook

In this article, we summarized various challenges of AL evaluation with regard
to being reliable, realistic, and comparable. Some of these appear naturally by
the problem’s definition, others are defined through the demands of real-world
applications. We proposed an evaluation methodology to initialize a discussion
on a gold standard for AL evaluation and provided preliminary results in a pilot
study which shows the importance of many repetitions in AL which hopefully
leads to comparable results without repeating whole experiments. Nevertheless,
it is essential to report all details of evaluation to be able to reproduce the results
of a paper. Those details have been discussed in this paper.

As future work, we plan to extend this literature overview and refine our
proposed methodology. Additionally, we aim at providing a large comparison
of different methodologies showing the effect of each component for different
selection strategies. In this paper, we excluded the whole discussion of online
algorithms and methods for evolving datastreams. Providing a valid evaluation
framework for one-shot AL, is one of the goals of future research.

Our vision is to develop an evaluation system, enabling researchers and prac-
titioners to collaborate. This system will provide a web-based user interface like
OpenML [44] showing detailed information about different AL methods and their
specific characteristics in relation to different tasks. In that way, we aim to stan-
dardize AL evaluation in order to simplify the steps towards practical solutions
and fair comparison.

Challenges of Reliable, Realistic and Comparable Active Learning Evaluation
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6. Bouguelia, M.R., Beläıd, Y., Beläıd, A.: An adaptive streaming active learning
strategy based on instance weighting. Pattern Recognition Letters 70, 38–44 (2016)

7. Brinker, K.: Incorporating diversity in active learning with support vector ma-
chines. In: Proceedings of the 20th International Conference on Machine Learning
(ICML). pp. 59–66 (2003)

8. Cai, W., Zhang, Y., Zhou, S., Wang, W., Ding, C., Gu, X.: Active learning for
support vector machines with maximum model change. In: Proceedings of the Eu-
ropean Conference on Machine Learning and Knowledge Discovery in Databases.
vol. 8724 (2014)

9. Calma, A., Leimeister, J.M., Lukowicz, P., Oeste-Rei, S., Reitmaier, T., Schmidt,
A., Sick, B., Stumme, G., Zweig, A.K.: From active learning to dedicated collabora-
tive interactive learning. In: Varbanescu, A.L. (ed.) 29th International Conference
on Architecture of Computing Systems, Workshop Proceedings. pp. 1–8. VDI Ver-
lag, Nuremberg, Germany (2016)

10. Cawley, G.C.: Baseline methods for active learning. In: Active Learning and Exper-
imental Design Workshop in Conjunction with AISTATS 2010. pp. 47–57 (2011)

11. Chapelle, O.: Active learning for parzen window classifier. In: Proceedings of the
Tenth International Workshop on Artificial Intelligence and Statistics. pp. 49–56
(2005)

12. Dasgupta, S., Hsu, D.: Hierarchical sampling for active learning. In: Proceedings of
the 25th International Conference on Machine learning. pp. 208–215. ACM (2008)

13. Demir, B., Persello, C., Bruzzone, L.: Batch-mode active-learning methods for the
interactive classification of remote sensing images. IEEE Transactions on Geo-
science and Remote Sensing 49(3), 1014–1031 (2011)

14. Dimitrakakis, C., Savu-Krohn, C.: Cost-Minimising Strategies for Data Labelling:
Optimal Stopping and Active Learning, pp. 96–111. Springer Berlin Heidelberg,
Berlin, Heidelberg (2008)

15. Efron, B.: Bootstrap methods: another look at the jackknife. The annals of Statis-
tics pp. 1–26 (1979)

16. Ertekin, S., Huang, J., Bottou, L., Giles, L.: Learning on the border: Active learning
in imbalanced data classification. In: Proceedings of the 16th ACM Conference on
Conference on Information and Knowledge Management. pp. 127–136. CIKM ’07,
ACM, New York, NY, USA (2007)

Challenges of Reliable, Realistic and Comparable Active Learning Evaluation

12



12 Daniel Kottke, Adrian Calma, Denis Huseljic, Georg Krempl, Bernhard Sick

17. Flach, P., Hernandez-Orallo, J., Ferri, C.: A coherent interpretation of AUC as a
measure of aggregated classification performance. In: Getoor, L., Scheffer, T. (eds.)
Proceedings of the 28th International Conference on Machine Learning, ICML
2011, Bellevue, Washington, USA. pp. 657–664. ACM, New York, NY, USA (2011)

18. Fu, Y., Zhu, X., Li, B.: A survey on instance selection for active learning. Knowl-
edge and Information Systems 35(2), 249–283 (2013)

19. Hand, D.J.: Measuring classifier performance: a coherent alternative to the area
under the roc curve. Machine Learning 77(1), 103–123 (2009)

20. Hu, B.G., Dong, W.M.: A study on cost behaviors of binary classification measures
in class-imbalanced problems. arXiv preprint arXiv:1403.7100 (2014)

21. Huang, K.h., Lin, H.t.: A novel uncertainty sampling algorithm for cost-sensitive
multiclass active learning. In: 2016 IEEE 16th International Conference on Data
Mining (ICDM) (2016)

22. Huang, S.j., Jin, R., Zhou, Z.H.: Active learning by querying informative and repre-
sentative examples. In: NIPS’10 Proceedings of the 23rd International Conference
on Neural Information Processing Systems. pp. 892–900 (2010)

23. Joshi, A.J., Porikli, F., Papanikolopoulos, N.P.: Scalable active learning for multi-
class image classification. IEEE Transactions on Pattern Analysis and Machine
Intelligence 34(11), 2259–2273 (2012)

24. Kapoor, A., Horvitz, E., Basu, S.: Selective supervision: Guiding supervised learn-
ing with decision-theoretic active learning. In: Veloso, M.M. (ed.) Proceedings of
the 20th International Joint Conference on Artifical Intelligence. pp. 877–882. Mor-
gan Kaufmann Publishers Inc. (2007)

25. Kottke, D., Krempl, G., Lang, D., Teschner, J., Spiliopoulou, M.: Multi-class prob-
abilistic active learning. In: ECAI. Frontiers in Artificial Intelligence and Applica-
tions, vol. 285, pp. 586–594. IOS Press (2016)

26. Krempl, G., Kottke, D., Lemaire, V.: Optimised probabilistic active learning
(OPAL) for fast, non-myopic, cost-sensitive active classification. Machine Learning
pp. 1–28 (2015)

27. Krempl, G., Kottke, D., Spiliopoulou, M.: Probabilistic active learning: Towards
combining versatility, optimality and efficiency. In: Proceedings of the 17th Inter-
national Conference on Discovery Science (DS), Bled. Lecture Notes in Computer
Science, Springer (2014)

28. Lamche, B., Trottmann, U., Wörndl, W.: Active Learning Strategies for Ex-
ploratory Mobile Recommender Systems. In: Proceedings of the Fourth Workshop
on Context-Awareness in Retrieval and Recommendation. pp. 10–17. Amsterdam,
Niederlande (2014)

29. Lewis, D., Gale, W.: A sequential algorithm for training text classifiers. In:
Conference on Research and Development in Information Retrieval. pp. 3–12.
ACM/Springer, New York, NY (1994)

30. Li, X., Guo, Y.: Active learning with multi-label svm classification. In: Proceedings
of the 23rd International Joint Conference on Artificial Intelligence (2013)

31. Longstaff, B., Reddy, S., Estrin, D.: Improving activity classification for health ap-
plications on mobile devices using active and semi-supervised learning. Proceedings
of the 4th International ICST Conference on Pervasive Computing Technologies
for Healthcare (2010)

32. Melville, P., Sindhwani, V.: Active dual supervision: Reducing the cost of annotat-
ing examples and features. In: Workshop on Active Learning for Natural Language
Processing. pp. 49–57. Boulder, CO (2009)

33. Nuzzo, R.: Statistical errors. Nature 506(7487), 150 (2014)

Challenges of Reliable, Realistic and Comparable Active Learning Evaluation

13



Challenges of Active Learning Evaluation 13

34. Olsson, F., Tomanek, K.: An intrinsic stopping criterion for committee-based active
learning. In: Conference on Computational Natural Language Learning. pp. 138–
146. Boulder, CO (2009)

35. Paquet, U., Gael, J.V., Stern, D., Kasneci, G., Herbrich, R., Graepel, T.: Vuvuzelas
& active learning for online classification. In: Workshop on Computational Social
Science and the Wisdom of Crowds. pp. 1–5. Whistler, BC (2010)

36. Parker, C.: An analysis of performance measures for binary classifiers. In: Pro-
ceedings of the 11th IEEE International Conference on Data Mining (ICDM). pp.
517–526. IEEE (2011)

37. Pasolli, E., Melgani, F.: Active learning methods for electrocardiographic signal
classification. IEEE Transactions on Information Technology in Biomedicine 14(6),
1405–16 (2010)

38. Reitmaier, T., Sick, B.: Let us know your decision: Pool-based active training of
a generative classifier with the selection strategy 4DS. In: Information Sciences -
Informatics and Computer Science Intelligent Systems Applications. vol. 230, pp.
106–131 (2013)

39. Settles, B.: Active learning literature survey. Computer Sciences Technical Report
1648, University of Wisconsin, Department of Computer Science (2009)

40. Sivaraman, S., Trivedi, M.M.: Active learning for on-road vehicle detection: a com-
parative study. Machine Vision and Applications pp. 1–13 (2011)

41. Son, Y., Lee, J.: Active learning using transductive sparse bayesian regression.
Information Sciences 374, 240–254 (2016)

42. Tomanek, K., Morik, K.: Inspecting sample reusability for active learning. In:
Guyon, I., Cawley, G.C., Dror, G., Lemaire, V., Statnikov, A.R. (eds.) Work-
shop on Active Learning and Experimental Design. JMLR Proceedings, vol. 16,
pp. 169–181 (2011)

43. Tuia, D., Volpi, M., Copa, L., Kanevski, M., Munoz-Mari, J.: A survey of active
learning algorithms for supervised remote sensing image classification. IEEE Jour-
nal of Selected Topics in Signal Processing 5(3), 606–617 (2011)

44. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: Openml: Networked science
in machine learning. SIGKDD Explorations 15(2), 49–60 (2013)

45. Vlachos, A.: A stopping criterion for active learning. Computer Speech & Language
22(3), 295–312 (2008)

46. Wang, J., Park, E.: Active learning for penalized logistic regression via sequential
experimental design. Neurocomputing 222, 183–190 (2017)

47. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics bulletin
1(6), 80–83 (1945)

48. Yan, Y., Rosales, R., Fung, G., Dy, J.G.: Active learning from crowds. Proceedings
of the 28th International Conference on Machine Learning pp. 1161–1168 (2011)

49. Yang, Y., Ma, Z., Nie, F., Chang, X., Hauptmann, A.G.: Multi-class active learn-
ing by uncertainty sampling with diversity maximization. International Journal of
Computer Vision 113(2), 113–127 (2014)

50. Yanik, E., Sezgin, T.M.: Active learning for sketch recognition. Computers and
Graphics (Pergamon) 52, 93–105 (2015)

Challenges of Reliable, Realistic and Comparable Active Learning Evaluation

14



Interactive Anonymization
for Privacy aware Machine Learning

Bernd Malle12, Peter Kieseberg12, Andreas Holzinger1

1 Holzinger Group HCI-KDD
Institute for Medical Informatics, Statistics & Documentation

Medical University Graz, Austria
b.malle@hci-kdd.org

2 SBA Research gGmbH, Favoritenstrae 16, 1040 Wien
PKieseberg@sba-research.org

Abstract. Privacy aware Machine Learning is the discipline of applying
Machine Learning techniques in such a way as to protect and retain per-
sonal identities during the process. This is most easily achieved by first
anonymizing a dataset before releasing it for the purpose of data min-
ing or knowledge extraction. Starting in June 2018, this will also remain
the sole legally permitted way within the EU to release data without
granting people involved the right to be forgotten, i.e. the right to have
their data deleted on request. To governments, organizations and cor-
porations, this represents a serious impediment to research operations,
since any anonymization results in a certain degree of reduced data util-
ity. In this paper we propose applying human background knowledge via
interactive Machine Learning to the process of anonymization; this is
done by eliciting human preferences for preserving some attribute values
over others in the light of specific tasks. Our experiments show that hu-
man knowledge can yield measurably better classification results than a
rigid automatic approach. However, the impact of interactive learning in
the field of anonymization will largely depend on the experimental setup,
such as an appropriate choice of application domain as well as suitable
test subjects.

Keywords: Machine Learning, Privacy aware ML, interactive ML, Knowl-
edge Bases, Anonymization, k-Anonymity, SaNGreeA, Information Loss,
Weight Vectors

1 Introduction and Motivation

In many sectors of today’s data-driven economies technical progress is dependent
on data mining, knowledge extraction from diverse sources, as well as the anal-
ysis of personal information. Especially the latter constitutes a vital building-
block for business intelligence and the provision of personalized services, which
are practically demanded by modern society. Often, the insights necessary for
enabling organizations to provide these goods require publication, linkage, and
systematic analysis of personal data sets from heterogeneous sources, exposing
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those data to the risk of leakage, with repercussions ranging from mild incon-
venience (exposure of a social profile) to potentially catastrophic ramifications
(leakage of health information to an employer).

Living up to those challenges, governments around the world are contem-
plating or already enacting new laws concerning the handling of personal data.
For instance, under the new European General Data Protection Regulations
(GDPR) taking effect on June 1st, 2018, customers are given a right to be forgot-
ten, meaning that an organization is obligated to remove a customer’s personal
data upon request. An exception to this rule is only granted to organizations
which anonymize data before analyzing them in any wholesale, automated fash-
ion. This brings us to the field of Privacy aware machine learning (PaML), e.g.
the application of ML algorithms only on previously anonymized data. Such
anonymization can be provided by perturbing data (e.g. introduction noise into
numerical values or differential privacy [4]) or k-anonymity [17] (clustering of
data into equivalence groups), which has since become the industry standard.

The original requirement of k-anonymity has since been extended by the con-
cepts of l-diversity [11] (where every cluster must contain at least l diverse sensi-
tive values), t-closeness [9] (demanding that the local distribution over sensitive
values must not diverge from its global distribution by more than a threshold of
t) as well as delta-presence [15] (which incorporates the background knowledge
of a potential attacker). Although all of those concepts are interesting in their
own right, for the sake of comparing interactive ML algorithms to their fully
automatic counterpart, we only took k-anonymity into consideration.

Based on our previous works on this topic [13] [12], in which we conducted
a comparison study of binary classification performance on perturbed (selective
deletion) vs. wholesale anonymized data, in this paper we introduce the notion
of interactive Machine Learning for (k-)anonymization.

2 k-Anonymity

Given the original tabular concept of anonymization, we will usually encounter
three different categories of attributes within a given dataset:

– Personal identifiers are data items which directly identify a person with-
out having to cross-reference or further analyze them. Examples are email
address or social security number (SSN). As personal identifiers are imme-
diately dangerous, this category of data is usually removed.

– Sensitive data, also called ’payload’, represents information that is crucial
for further data mining or research purposes. Examples for this category
would be disease classification, drug intake or personal income. This data
shall be preserved in the anonymized dataset and can therefore not be deleted
or generalized.

– Quasi identifiers (QI’s), are data which in themselves do not directly
reveal the identity of a person, but might be used in aggregate to reconstruct
it. For instance, [18] reported in 2002 that the identity of 87% of U.S. citizens

Interactive Anonymization for Privacy aware Machine Learning
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could be uncovered via just the 3 attributes zip code, gender and date of
birth. Despite this danger, QI’s may contain vital information to research
applications (like ZIP code in a disease spread study); they are therefore
generalized to an acceptable compromise between privacy (data loss) and
information content (data utility).

Based on this categorization k-anonymity [16] was introduced as a formal
concept of privacy, in which a record is released only if its quasi-identifiers are
indistinguishable from at least k − 1 other entities in the dataset. This can be
imagined like a clustering of data into so-called equivalence groups of at least
size k, with all internal QI’s being generalized to the exact same level.

Generalization in this setting means an abstraction of attribute value: e.g.
given two ZIP codes of ’8010’ and ’8045’, we could first generalize to ’80**’, then
incorporate another data point showing ZIP ’8500’ by generalizing the cluster to
’8***’, and finally merging with any other ZIP code to the highest level of ’all’,
also denoted as ’*’.

3 interactive Machine Learning

Interactive ML algorithms adjust their inner workings by continuously inter-
acting with an outside oracle, drawing positive / negative reinforcement from
this interaction [7]. Such systems are especially useful for highly-personalized
predictions or decision support [8]; moreover many real-world problems exhibit
(super)exponential algorithmic runtime; in such cases human brains dwarf ma-
chines at approximating solutions and learning from very small samples, thus
enabling us to ’intuit’ solutions efficiently [6].

By incorporating humans as oracles into this process, we can elicit back-
ground knowledge regarding specific use cases unknown to automatic algorithms
[19]. This however is highly dependent on the users’ experience in a certain field
as well as data / classification complexity; domain experts can of course be
expected to contribute more valuable decision points than laymen; likewise, a
low-dimensional dataset and simple classification tasks will result in higher qual-
ity human responses than convoluted problem sets.

While the authors of [14] propose a system that interacts with a user in order
to set a certain k-factor and subsequently provides a report on information loss
and Kurtosis of QI distributions, the algorithm is not interactive by our definition
in that it does not influence the inner workings of the algorithm during the
learning phase. This is also true in case of the Cornell Anonymization Toolkit
(Cat) [20], which conducts a complete anonymization run and only afterwards
lets the user decide if they are satisfied with the results. In contrast, our approach
alters algorithmic parameters upon every (batch of) human decisions, letting the
algorithm adapt in real-time.

[10] describe an approach incorporating humans into the anonymization pro-
cess by allowing them to set constraints on attribute generalization; moreover
they construct generalization hierarchies involving domain-specific ontologies.

Interactive Anonymization for Privacy aware Machine Learning
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Although this technique marks a departure from wholesale automatic anonymiza-
tion, it still lacks the dynamic human-computer interaction of our approach.

Apart from the field of privacy, interactive ML is present in a wide spectrum
of applications, from bordering medical fields like protein interactions / cluster-
ings [1] via on-demand group-creation in social networks [2] to even teaching
algorithms suitable mappings from gestures to music-generating parameters [5].

4 Experiments

The following sections will describe our experiment in detail, encompassing the
general iML setting, chosen data set, anonymization algorithm used as well as a
description of the overall processing pipeline employed to obtain the final results
as presented.

4.1 General setting

The basic idea of our experiment was to compare different weight vectors repre-
senting attribute (quasi-identifier) importance during anonymization: Let’s say
that a doctor needs ro release a dataset for the purpose of studying disease-
spread; in this case ’ZIP code’ information is probably (but not necessarily) of
much greater importance then ’occupation’ or ’race’. However, if a skin cancer
study is to be performed, ’race’ information might be of utmost importance,
whereas ’ZIP code’ might be negligible.

In our experiment, the task was to classify a people dataset on the target
attributes income, education level and marital status. Therefore, we tested an
equal weight vector setting against two others obtained from human experiments:
1) bias in which the user just specified which attributes they thought would be
important for a specific classification by moving sliders, and 2) iML in which
the user was tasked to decide a series of clustering possibilities by moving a
data row to one of two partly anonymized clusters presented, thereby conveying
which attributes were more important to preserve than others (Figure 1). Only
the last method constitutes an interactive learning approach by introducing an
oracle into the process.

4.2 Data

We chose the adults dataset from the UCI Machine Learning repository which
was generated from US census data from 1994 and contains approximately 50k
entries in it’s original; this data-set is used by many anonymization researchers
and therefore constitutes a quasi-standard. After initial preprocessing we chose
the first 500 complete data rows as our iML experimental data to be presented to
users. After obtaining bias / iml weights from the experiment, we chose the first
3k entries of the original data as the basis for producing 775 new, anonymized
data sets. Although 3k rows might seem overly frugal on our part, we have
asserted via random deletion of original data points that classifier performance
remains stable for as little as 1.5k rows. Of the original attributes (data columns)

Interactive Anonymization for Privacy aware Machine Learning
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Fig. 1. Two different implementations of the iML interface design.

provided 4 were deleted: ’capital-gain’ & ’capital-loss’ (both were too skewed to
be useful for humans), ’fnlwgt’ (a mere weighting factor) as well as ’education’
which is also represented by ’education num’.

4.3 Anonymization Algorithm

In order to conduct our experiments, it was necessary to choose an algorithm
which would enable us to easily hook into its internal logic - we therefore chose a
greedy clustering algorithm called SaNGreeA (Social network greedy clustering)
which was introduced by [3] and implemented it in JavaScript. This enabled us
to execute it within a browser environment during our iML experiments as well
as server-side for batch-execution of all derived datasets afterwards. As a greedy
clustering algorithm SaNGreeA’s runtime lies in O(n2) - which we were willing
to accept in exchange for it’s white-box internals.

Interactive Anonymization for Privacy aware Machine Learning
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Besides its capacity to anonymize graph structures (which we did not utilize
during this work), it is a relatively simple algorithm considering General infor-
mation loss - or GIL - during anonymization. This GIL can be interpreted by the
sum of information loss occurring during generalization of continuous (range) as
well as hierarchical attributes:

GIL(cl) = |cl| · (
s∑

j=1

size(gen(cl)[Nj ])

size(minxεN (X[Nj ]),maxxεN (X[Nj ]))

+

t∑

j=1

height(Λ(gen(cl)[Cj ]))

height(HCj
)

)

where:
- |cl| denotes the cluster cl’s cardinality;
- size([i1, i2]) is the size of the interval [i1, i2], i.e., (i2− i1);
- Λ(w), wεHCj

is the sub-hierarchy of HCj
rooted in w;

- height(HCj
) denotes the height of the tree hierarchy HCj

;

The following formulas then give the total / normalized GIL, respectively:

GIL(G,S) =

v∑

j=1

GIL(clj) and NGIL(G,S) =
GIL(G,S)

n · (s+ t)

The algorithm starts by picking a (random or pre-defined) data row as its
first cluster, then iteratively picking best candidates for merging by minimizing
GIL until the cluster reaches size k, at which point a new data point is chosen as
the initiator for the next cluster; this process continues until all data points are
merged into clusters, satisfying the k-anonymity criterion for the given dataset.

4.4 Processing pipeline for obtaining results

Once our iML experiments had yielded enough weight vectors, we had to generate
a whole new set of anonymized datasets on which we subsequently applied 4
classifiers on each of the 3 target attributes (columns) described; therefore we
designed the following processing pipeline:

1. Taking the first 5k rows of the original, preprocessed dataset as input and
applying k-anonymization with a k-factor range of [5, 10, 20, 50, 100, 200]
and 129 different weight vectors (equal, bias, iml) from our experiments on
it, we produced 774 anonymized datasets (775 including the original).

2. We executed 4 classifiers on all of the datasets and compared their F1 score;
the reason for selecting multiple algorithms was to explore if anonymiza-
tion would yield different behaviors on different mathematical approaches
for classification. The four algorithms used were linear SVC (as a represen-
tative of Support Vector Machines), logistic regression (gradient descent),

Interactive Anonymization for Privacy aware Machine Learning
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gradient boosting (ensemble, boosting) as well as random forest (ensemble,
bagging). While reading the datasets pertaining to the classification target of
education, the 14 different education levels present within the adult dataset
were grouped into 4 categories ’pre-high-school’, ’high school’, ’<=bachelors’
and ’advanced studies’.

3. For each combination of classification target (income, marital status, edu-
cation) and weight category (equal, bias, iml) we averaged the respective
results. Results were plotted per target, as this allows better comparison
between different classifiers. The leftmost point in all plots designates the
original, un-anonymized dataset.

5 Results & Discussion

As per the results in our previous work on PaML [13] [12] we generally expected
1/x shaped curves for classifier performance as factors of k are increasing. These
expectations held to only a small degree; moreover for targets education as well
as income there was no clear winner amongst the weight categories, with some
achieving better or worse depending on a specific factor of k.

We got the smoothest results for the marital status target, with human bias
winning consistently over equal weights as well as human interaction (Figure 2).
We interpret this as stemming from the fact that there is a significant correlation
between the attributes ’marital-status’ and ’relationship’ in the dataset, which
led users to consciously overvalue the latter when prompted for their bias. It is
not completely clear why the iML results were not able to keep up in this case,
but since this seems to be a general phenomenon throughout our results, we will
discuss this in a later paragraph.

On classification target education, bias still mostly outperforms iML-obtained
attribute weights, with equal weights slightly winning out at very high factors of
k (Figure 3). Although we assume that apparently important clues towards ed-
ucation might be misleading (like income or working hours), this cannot explain
the difference between bias- and iML-based results. It has to be noted however,
that results on this target are distinctly inferior to those of the other scenarios
which might diminish the gap’s significance.

Only on target income did we observe a partly reversed order between human
bias and iML - however at the cost of both being usually inferior to a simple
setting with equal attribute weights (Figure 4). This is especially surprising
because income was the only binary classification task in our experiments, which
should have given humans a slight advantage over the algorithm. On the other
hand, human bias seems most susceptible to falling prey to certain stereotypes
in the area of money (w.r.t. gender, race, marital status...), which would explain
the reversal of results.

As for the failure of iML to significantly outperform both the equal weight
setting and especially human bias, we conjecture that our experimental setup has
produced those effects: Since we wanted our users to conduct their experiment in
real-time but needed a simple implementation of an anonymization algorithm to

Interactive Anonymization for Privacy aware Machine Learning
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Fig. 2. Results on target marital status - human bias wins consistently over both equal
weights and human interaction with the algorithm.

enable this interaction (which resulted in an O(n2) algorithmic runtime), we had
to limit ourselves to just a tiny subset of data (500 rows, merely 1% of the original
dataset). This choice apparently resulted in generalizations proceeding far too
quickly, reaching suppression (’all’) levels prematurely, thereby denying our users
sensible clustering choices. On the other hand, the effect could also stem from
users not really trying to contribute to the experiments in a meaningful way;
this effect could only be mitigated by selecting more serious users or choosing
some less serious (more social?) application domain.

Overall, we were also surprised that a seemingly absurd k-factor of 200 would
still yield comparably good results (and in some cases even improve perfor-
mance..).

6 Open problems & future challenges

As iML for anonymization is still a fledgling sub-area in the larger fields of
privacy as well as Machine Learning, there are certainly innumerable possibilities
for even basic progress & development. The following list is only a tiny subset
of possible research venues we deem suitable for our own future work:

Interactive Anonymization for Privacy aware Machine Learning
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Fig. 3. Results on target education - we still see human bias performing slightly better
than equal weights / iML in most cases of k, but not as consequently as above.

– Explain the unexpected behavior of linear SVC on the income target at
high levels of k; probably by performing comparison studies on synthetically
generated datasets.

– Faster algorithm. Repeat the experiments with a faster algorithmic im-
plementation so that we can use thousands of data points even in real time
within a Browser: this would lead to more relaxed generalizations, allow-
ing the user to make better interactive choices, thus presumably improving
results by quite some margin.

– Expert domain, domain experts. Choosing an expert domain like can-
cer studies in combination with proper experts like medical professionals,
we would expect both human bias as well as iML results to significantly
outperform a pre-defined weight vector.

– Different setting. On the other hand, a more ’gamified’ setting such as rec-
ommendations within a social network could motivate amateur users to get
more immersed into the experiment, yielding better results even for mundane
application tasks.

– Different data formats. As Artificial Intelligence is slowly reaching matu-
rity, it is now also applied to non- and semi-structured data like audio/video

Interactive Anonymization for Privacy aware Machine Learning
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Fig. 4. Results on target income - only in this scenario do we see iML-based results gen-
erally outperforming bias (except linear SVC), nevertheless incapable of outperforming
the rigidly equal setting.

or even *omics data. Since images are clearly relevant for medical research,
and humans extremely efficient at processing them, studying interactive ML
on visual data promises great scientific revenue.

7 Conclusion

Based on the emerging necessity of Privacy aware data processing, in this work
we presented a fundamental approach of bringing human knowledge to bear on
the task of anonymization via interactive Machine Learning. We devised an ex-
periment involving clustering of data points with respect to human preference
for attribute preservation and tested the resulting parameters on classification of
anonymized people data into classes of marital status, education and income. Our
preliminary results show that human bias can definitely contribute to even mun-
dane application areas, whereas more complex or convoluted tasks may require
trained professionals or better data preparation (dimensionality reduction etc.).
We also described our insights regarding technical details for iML experiments
and closed by outlining promising future research venues.
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Transfer learning for time series anomaly
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Abstract. Currently, time series anomaly detection is attracting sig-
nificant interest. This is especially true in industry, where companies
continuously monitor all aspects of production processes using various
sensors. In this context, methods that automatically detect anomalous
behavior in the collected data could have a large impact. Unfortunately,
for a variety of reasons, it is often difficult to collect large labeled data
sets for anomaly detection problems. Typically, only a few data sets will
contain labeled data, and each of these will only have a very small number
of labeled examples. This makes it difficult to treat anomaly detection
as a supervised learning problem. In this paper, we explore using trans-
fer learning in a time-series anomaly detection setting. Our algorithm
attempts to transfer labeled examples from a source domain to a target
domain where no labels are available. The approach leverages the insight
that anomalies are infrequent and unexpected to decide whether or not
to transfer a labeled instance to the target domain. Once the transfer is
complete, we construct a nearest-neighbor classifier in the target domain,
with dynamic time warping as the similarity measure. An experimental
evaluation on a number of real-world data sets shows that the overall
approach is promising, and that it outperforms unsupervised anomaly
detection in the target domain.

Keywords: transfer learning; anomaly detection; time series

1 Introduction

Time series data frequently arise in many different scientific and industrial con-
texts. For instance, companies use a variety of sensors to continuously monitor
equipment and natural resources. One relevant use case is developing algorithms
that can automatically identify time series that show anomalous behavior. Ide-
ally, anomaly detection could be posed as a supervised learning problem. How-
ever, these algorithms require large amounts of labeled training data. Unfor-
tunately, such data is often not available as obtaining expert labels is time-
consuming and expensive. Typically, only a small number of labels are known
for a limited number of data sets. For example, if a company monitors several
similar machines, they may only label events (e.g., shutdown, maintenance...)
for a small subset of them.
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Transfer learning is an area of research focused on methods that are able to
extract information (e.g., labels, knowledge, etc.) from a data set and reapply
it in another, different data set. Specifically, the goal of transfer learning is
to improve performance on the target domain by leveraging information from
a related data set called the source domain [10]. In this paper, we adopt the
paradigm of transfer learning for anomaly detection. In our setting, we assume
that labeled examples are only available in the source domains, and that there
no labeled examples in the target domain. In the example, we utilize the label
information available for machine A to help constructing an anomaly detection
algorithm for machine B, where no labeled points are available for machine B.

In this paper we study transfer learning in the context of time-series anomaly
detection, which has received less attention in transfer learning [1, 6, 10]. Our
approach attempts to transfer instances from the source domain to the target
domain. It is based on two important and common insights about anomalous
data points, namely that they are infrequent and unexpected. We leverage these
insights to propose two different ways to identify which source instances should
be transferred to the target domain. Finally, we make predictions in the target
domain by using 1-nearest neighbors classifier where the transferred instances are
the only labeled data points in the target domain. We experimentally evaluate
our approach on a large data set adapted from a real-world data set and find
that it outperforms an unsupervised approach.

2 Problem statement

We can formally define the task we address in this paper as follows:

Given: One or multiple source domains DS with source domain data {XS , YS},
and a target domain DT with target domain data {XT , YT }, where the in-
stances x ∈ X are time series and the labels y ∈ Y are ∈ {anomaly, normal}.
Additionally, only partial label information is available in the source do-
mains, and no label information in the target domain.

Do: Learn a model for anomaly detection fT (·) in the target domain DT using
the knowledge in DS , and DS 6= DT .

Both the source and target domain instances are time series. Thus each instance
x = {(t1, v1), . . . , (tn, vn)}, where ti is a time stamp and vi is a single mea-
surement of the variable of interest v at time ti. The problem has the following
characteristics:

– The joint distributions of source and target domain data, denoted by pS(X,Y )
and pT (X,Y ), are not necessarily equal.

– No labels are known for the target domain, thus YT = ∅. In the source
domain, (partial) label information is available.

– The same variable v is monitored in the source and target domain, under
possibly different conditions (e.g., the same machine in different factories).

– The number of samples in the DS and DT are denoted respectively by nS =
|XS | and nT = |XT |, and no restrictions are imposed on them.

Transfer Learning for Time Series Anomaly Detection
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– Each time series in DS or DT has the same length d.
– The source and target domain instances are randomly sampled from the true

underlying distribution.

3 Context and related work

Several flavors of transfer learning distinguish themselves in the way knowledge is
transferred between source and target domain. In this paper we employ instance-
based transfer learning. The idea is to transfer specific (labeled) instances from
the source domain to the target domain in order to improve learning a tar-
get predictive function fT (·) [6]. In the case of anomaly detection, the target
function is a classifier that aims to distinguish normal instances from anoma-
lous instances. However, care needs to be taken when selecting which instances
to transfer, because transferring all instances could result in degraded perfor-
mance in the target domain (i.e., negative transfer) [8]. A popular solution is
to define a weight for each transferred instance based on the similarity of the
source and target domain. The latter is characterized either by the similarity of
the marginal probability distributions pS(X) and pT (X), and/or the similarity
of conditional probability distributions pS(Y |X) and pT (Y |X). Various ways of
calculating these weights have been proposed [3, 6, 10]. However, the problem
outlined in this paper states that YT = ∅, which is a realistic assumption given
that in practice labeling is expensive. Hence, we cannot easily calculate pT (Y |X).
Furthermore, even if the marginal distributions are different, it can still be ben-
eficial to transfer specific instances. Consider the following. Since the target task
is anomaly detection, one cares for a classifier that robustly characterizes normal
behavior. By adding a diverse set of anomalies to the training data of the clas-
sifier, the learned decision surfaces will be more restricted, ensuring a decrease
of type 2 errors when detecting anomalies in new, unseen data.

The subject of instance-based transfer learning for time series has received
less attention in literature. Spiegel recently proposed a mechanism for learning
a target classifier using set of unlabeled time series in various source domains,
without assuming that source and target domain follow the same generative
distribution or even have the same class labels [7]. However, they require a
limited set of labels in the target domain, whereas we have YT = ∅.

4 Methodology

In order to learn the model for anomaly detection fT (·) in the target domain, we
transfer labeled instances from different source domains. To avoid situations of
negative transfer (e.g., transferring an instance with the label anomaly that maps
to a normal instance in the target domain), a decision function decides whether
to transfer an instance or not. First, we outline the intuitions behind the decision
function based on two commonly known characteristics of anomalous instances
(Sec. 4.1). Then, we propose two distinct decision functions (Sec. 4.2 and 4.3).
Finally, we describe a method for supervised anomaly detection in the target
domain based on the transferred instances (Sec. 4.4).

Transfer Learning for Time Series Anomaly Detection
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4.1 Instance-based transfer learning for anomaly detection

The literature frequently makes two important observations about anomalous
data:

Observation 1 Anomalies occur infrequently [2].

Observation 2 If a model of normal behavior is learned, then anomalies consti-
tute all unexpected behavior that falls outside the boundaries of normal behavior.
This implies that it is impossible to predefine every type of anomaly.

From the first observation we derive the following property:

Property 1 Given a labeled instance (xS , yS) ∈ DS and yS = normal. If the
probability of the instance under the true target domain distribution pT (xS) is
high (i.e., the instance is likely to be sampled from the target domain), then the
probability that the true label of the instance in the target domain is normal,
pT (yS = normal|xS) is also high.

The second observation allows us to derive the reverse property:

Property 2 Given a labeled instance (xS , yS) ∈ DS and yS = anomaly. If the
probability of the instance under the true target domain distribution pT (xS) is
low, then the probability that the true label of the instance in the target domain
is anomaly, pT (yS = anomaly|xS) is high.

Notice that in the latter property the time series xS can have any form, while this
is not true for the first property, where the form is restricted by the distribution
of the target domain data. Given a labeled instance (xS , yS) ∈ DS that we want
to transfer to the target domain, Property 1 and Property 2 allow us to make
a decision whether to transfer or not. We can formally define a weight associated
with xS which will be high when the transfer makes sense, and low when it will
likely cause negative transfer.

wS =

{
pT (xS) if yS = normal

1− pT (xS) if yS = anomaly
(1)

However, since each time series xS can be considered as a vector of length d in
Rd (i.e., it consists of a series of numeric values for continuous variable v), the
probability of observing exactly xS under the target domain distribution must
be 0. Instead, we calculate the probability of observing a small interval around
xS , such that:

pT (xS) = lim
∆I→0

∫

∆I

pT (xS)dx (2)

where ∆I is an infinitesimally small region around xS in the target domain. This
probability is equal to the true density function over the target domain fT (xS).
Given that the true target domain density is unknown, we need to estimate it
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from the data XT . It is shown that this estimate f̂T (xS) can be calculated as
follows [4]:

f̂T (xS) =
1

nT

1

(hnT
)d

nT∑

i=1

K

(
xS − xi
(hnT

)d

)
(3)

where K(x) is the window function or kernel in the d-dimensional space and∫
Rd K(x)dx = 1. The parameter hnT

> 0 is the bandwidth corresponding to
the width of the kernel, and depends on the number of observations nT . The
estimate f̂T (xS) converges to the true density fT (xS) when there is an infinite
number of observations, nT → ∞, under the assumption that the data XT are
randomly sampled from the true underlying distribution.

4.2 Density-based transfer decision function

For guaranteeing convergence of f̂T (xS) to the true density function, the sam-
ple size must increase exponentially with the length d of the time series data.
The reasoning is clear; high-dimensional spaces are sparsely populated by the
available data, making it hard to produce accurate estimates. However, this is
often infeasible in practice (gathering data is expensive). For longer time series
d is automatically high, that is, if we treat the time series as a vector in Rd. As
a practical solution, we propose to reduce the length d of the time series xS by
dividing it into l equal-length subsequences, each with length m < d. For every
subsequence s in xS , the density is estimated using Eq. 3 with a Gaussian kernel:

f̂T,m(s) =
1

nT

1

(hnT

√
2π)m

nT∑

i=1

exp

(
−1

2

(
s− si
hnT

)2
)

(4)

where hnT
is the standard deviation of the Gaussian, and si are the subsequences

of the instances in XT . The Gaussian kernel ensures that instead of simply
counting similar subsequences, the count is weighted for each subsequence si
based on the kernelized distance to sS .

Estimating the densities for the subsequences yields more accurate estimates
given the reduced dimensionality, but simultaneously results in l = m/d esti-
mates for each time series xS . Hence, we have to adjust Eq. 1 to reflect this new
situation. We only show the case in which the label yS = normal as the reverse
case is straightforward:

wS =
1

Zmax − Zmin

(
l∑

i=1

ˆfT,m(si)− Zmin
)

(5)

Zmax = max
xT∈{XT∪xS}

∑

sj∈xT

ˆfT,m(sj) (6)

The sum of the density estimates in the subsequences is normalized using min-
max normalization, such that wS ∈ [0, 1]. Zmin is calculated similarly as Zmax
in Eq. 6, but taking the minimum instead of maximum. By setting a threshold
on the final weights, we make a decision on whether to transfer or not.
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4.3 Cluster-based transfer decision function

Our second proposed decision function is also based on the intuitions outlined in
Sec. 4.1. First, the target domain data XT are clustered using k-means clustering.
Second, the resulting set of clusters C over XT is divided into a set of large
clusters, and a set of small clusters according to the following definition [5]:

Definition 1. Given a dataset XT with nT instances, a set of ordered clusters
C = {C1, ..., Ck} such that |C1| ≥ |C2| ≥ ... ≥ |Ck|, and two numeric parameters
α and β, the boundary b between large and small clusters is defined such that
either of the following conditions holds:

b∑

i=1

|Ci| ≥ nT × α (7)

|Cb|
|Cb+1|

≥ β (8)

LC = {Ci|i ≤ b} and SC = {Ci|i > b} are respectively the set of large and small
clusters, and LC ∪ SC = C.

Furthermore, we define the radius of a cluster as ri = maxxj∈Ci
‖xj − ci‖2.

Lastly, a decision is made whether or not to transfer a labeled instance xS
from the source domain. Intuitively, and in line with Observation 1 and 2,
anomalies in XT should fall in small clusters, while large clusters contain the
normal instances. Transferred labeled instances from the source domain should
adhere to the same intuitions. Each transferred instance is assigned to a cluster
Ci ∈ C such that ‖xS − ci‖2 is minimized. An instance is only transferred in two
cases. First, if the instance has label normal and is assigned to a cluster Ci such
that Ci ∈ LC and the distance of the instance to the cluster center is less or
equal to the radius of the cluster. Second, if the instance has label anomaly and
fulfills either of two conditions: the instance is assigned to a cluster Ci such that
Ci /∈ LC, or it is assigned to a cluster Ci such that Ci ∈ LC and the distance of
the instance to the cluster center is larger than the radius of the cluster. In all
other cases there is no transfer.

4.4 Supervised anomaly detection in a set of time series

After transferring instances from one or multiple source domains to the target
domain using the decision functions in Sec. 4.2 and 4.3, we can construct a
classifier in the target domain to detect anomalies. Ignoring the unlabeled target
domain data, we only use the set of labeled data L = {(xi, yi)}nA

i=1, nA being the
number of instances transferred. It has been shown that one-nearest-neighbor
(1NN) classifier with dynamic time warping (DTW) or Euclidean distance is a
strong candidate for time series classification [9]. To that end, we construct a
1NN-DTW classifier on top of L to predict the labels of unseen instances.

Transfer Learning for Time Series Anomaly Detection
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5 Experimental evaluation

In this section we aim to answer the following research questions:

– Do the proposed decision functions for instance-based time series transfer
succeed in transferring useful knowledge between source and target domain.

First, we introduce the unsupervised baseline method to which we will compare
the 1NN-DTW method with instance transfer (Sec. 5.1). Then, we discuss the
data, the experimental setup, and the results (Sec. 5.2).

5.1 Unsupervised anomaly detection in a set of time series

Without instance transfer, the target domain consists of a set of unlabeled time
series data U = {(xi)}nT

i=1. Based on the anomaly detection approach outlined in
Kha et al., we introduce a straightforward unsupervised algorithm for anomaly
detection that will serve as a baseline [5]. The algorithm calculates the cluster
based local outlier factor (CBLOF) for each series in U .

Definition 2. Given a set of large LC and small clusters SC defined over U
(as per definition 1), the CBLOF of an instance xi ∈ U , belonging to cluster Ci,
is calculated as:

CBLOF (xi) =

{
|Ci| ×D(xi, ci) if Ci ∈ LC
|Ci| ×mincj∈LC D(xi, cj) if Ci ∈ SC

(9)

Then, anomalies are characterized by a high CBLOF.

5.2 Experiments

Data. Due to the lack of readily available benchmarks for the problem outlined
in Sec. 2, we experimentally evaluate on a real-world data set obtained from
a large company. The provided data detail resource usage continuously tracked
over a period of approximately two years. Since the usage is highly dependent
on the time of day, we can generate 24 (hourly) data sets by grouping the usage
data by hour. Each data set contains about 850 different time series. For a
limited number of these series in each set we possess expert labels indicating
either normal or anomaly.

Experimental setup. In turn, we treat each of the 24 data sets as the target do-
main and the remaining data sets as source domains. We consider transferring
from a single source or multiple sources. Any labeled examples in the target
domain are set aside and serve as the test set. First, the proposed decision
functions are used to transfer instances from either a single source domain or
multiple source domains combined to the target domain. Then, we train both
the unsupervised CBLOF (Sec. 5.1), and supervised 1NN-DTW anomaly de-
tection model that uses the labeled instances transferred to the target domain

Transfer Learning for Time Series Anomaly Detection
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(Sec. 4.4). Finally, both models predict the labels of the test set, and we report
classification accuracy. For the density-based approach, we set the threshold on
the final weights to 0.5. For the cluster-based approach we selected α = 0.95,
β = 4, and the number of clusters 10.
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Fig. 1: The graph plots the mean classification accuracy and the standard deviation
for each of the 24 (hourly) data sets. These statistics are calculated after considering
7 randomly chosen data sets as source domains, and performing the analysis for each
combination of source and target. The plot indicates both transfer approaches with
1NN-DTW perform quite similarly, while outperforming the unsupervised method in
21 of the 24 data sets.

Evaluation. A limited excerpt of the experimental results is reported in Table
1. Figure 1 plots the full experimental results in a condensed manner. From the
results we derive the following observations. First, instance transfer with 1NN-
DTW outperforms the unsupervised CBLOF algorithm in 21 of the 24 data sets.
Clearly, this indicates that the instances that are transferred by both decision
functions, are useful in detecting anomalies. Second, the transfer works both
between similar and dissimilar domains. To see this, one must know that in our
real-world data set resource usage during the night is very different from usage
during the day. As a result, the data sets at 00:00 and 01:00 are fairly similar
for example, while data sets at 21:00 and 15:00 are highly different. From Table
1 it is clear that this distinction has little impact on the performance of the
1NN-DTW model. Third, the cluster-based decision function performs at least
as well as the density-based variant. This is apparent from Figure 1.

6 Conclusion

In this paper we introduced two decision functions to guide instance-based trans-
fer learning in case the instances are time series and the task at hand is anomaly
detection. Both functions are based on two commonly knowns insights about
anomalies: they are infrequent and unexpected. We experimentally evaluated
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Table 1: A limited excerpt of the experimental evaluation. The number of transferred
instances is denoted by nA. Density-based is the density-based decision function with
1NN-DTW anomaly detection. Cluster-based is the cluster-based decision function with
1NN-DTW. CBLOF is the unsupervised anomaly detection. All reported numbers are
classification accuracies on a hold-out test set in the target domain, rounded off. Combo
is the the combination of 7 separate, randomly chosen source domains.

Cluster-based Density-based CBLOF

Source Target nA Result nA Result Result

01:00 00:00 14 89% 13 89% 58%
03:00 00:00 11 79% 11 74% 52%
21:00 00:00 10 79% 9 58% 52%
combo 00:00 60 90% 46 85% 63%
03:00 06:00 6 52% 5 52% 39%
11:00 06:00 15 56% 8 56% 35%
21:00 06:00 7 52% 8 48% 39%
combo 06:00 79 57% 54 44% 35%
03:00 15:00 6 58% 5 58% 23%
11:00 15:00 19 65% 9 58% 30%
21:00 15:00 7 58% 7 58% 19%
combo 15:00 85 67% 54 54% 27%
03:00 19:00 6 52% 5 52% 44%
11:00 19:00 16 60% 8 48% 40%
21:00 19:00 7 52% 8 44% 40%
combo 19:00 81 56% 50 48% 44%

the proposed decision functions in combination with a 1NN-DTW classifier by
comparing it to an unsupervised anomaly detection algorithm on a real-world
data set. The experiments showed that the transfer-based approach outperforms
the unsupervised approach in 21 of the 24 data sets. Additionally, both decision
functions lead to similar results.

References

1. Andrews, J.T., Tanay, T., Morton, E., Griffin, L.: Transfer representation-learning
for anomaly detection. ICML (2016)

2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM com-
puting surveys (CSUR) 41(3), 1–72 (2009)

3. Chattopadhyay, R., Sun, Q., Fan, W., Davidson, I., Panchanathan, S., Ye, J.:
Multisource domain adaptation and its application to early detection of fatigue.
ACM Transactions on Knowledge Discovery from Data (TKDD) 6(4), 18 (2012)

4. Fukunaga, K.: Introduction to statistical pattern recognition. Academic press
(2013)

5. Kha, N.H., Anh, D.T.: From cluster-based outlier detection to time series discord
discovery. In: Revised Selected Papers of the PAKDD 2015 Workshops on Trends
and Applications in Knowledge Discovery and Data Mining-Volume 9441. pp. 16–
28. Springer-Verlag New York, Inc. (2015)

Transfer Learning for Time Series Anomaly Detection

35



6. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on knowledge
and data engineering 22(10), 1345–1359 (2010)

7. Spiegel, S.: Transfer learning for time series classification in dissimilarity spaces.
In: Proceedings of AALTD 2016: Second ECML/PKDD International Workshop
on Advanced Analytics and Learning on Temporal Data. p. 78 (2016)

8. Torrey, L., Shavlik, J.: Transfer learning. Handbook of Research on Machine Learn-
ing Applications and Trends: Algorithms, Methods, and Techniques 1, 242 (2009)

9. Wei, L., Keogh, E.: Semi-supervised time series classification. In: Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining. pp. 748–753. ACM (2006)

10. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. Journal
of Big Data 3(1), 9 (2016)

Transfer Learning for Time Series Anomaly Detection

36



Probabilistic Active Learning with
Structure-Sensitive Kernels

Dominik Lang1, Daniel Kottke2, Georg Krempl1, and Bernhard Sick2

1 KMD Lab, Faculty of Computer Science,
Otto-von-Guericke University, Magdeburg, Germany

{dominik.lang / georg.krempl}@ovgu.de
2 IES Group, Faculty of Computer Science,

University of Kassel, Germany
{daniel.kottke / bsick}@uni-kassel.de

Abstract. This work proposes two approaches to improve the pool-
based active learning strategy ’Multi-Class Probabilistic Active Learn-
ing ’ (McPAL) by using two kernel functions based on Gaussian mixture
models (GMMs). One uses the kernels for the instance selection of the
McPAL strategy, the second employs them in the classification step. The
results of the evaluation show that using a different classification model
from the one that is used for selection, especially an SVM with one of
the kernels, can improve the performance of the active learner in some
cases.

Keywords: active learning, gaussian mixture, kernel function, support
vector machine, McPAL

1 Introduction & Motivation

Active learning (AL) is a special case of semi-supervised machine learning, in
which a learning algorithm has both labeled and unlabeled data available to it
and is able to acquire the true labels of instances from an external source, in
most cases one or multiple human agents. Since the number of labels that can
be acquired is limited due to the cost that the acquisition entails, AL strategies
aim to select instances that maximize the learners classification performance
while being efficient with respect to the costs. A pool-based AL strategy named
’Multi-Class Probabilistic Active Learning ’ (McPAL) [10] has shown to outper-
form competing strategies. This paper investigates the possibility of improving
the performance of the method by including the information captured by a Gaus-
sian mixture model (GMM) into the active learner. To achieve this, two kernel
functions that are based on a GMM are used. These structure-sensitive kernel
functions, based on the GMM [1] and RWM [17] distance measures, are lever-
aged by the active learner in two different ways: (1) by being included in the
computation of the McPAL score, (2) by being used in the model that performs
classification based on the sampled set of labeled instances. These approaches
are compared to the original McPAL method as well as random sampling in a
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series of experiments on one artificial data set and nine real-world data sets from
the UCI machine learning repository [14].

2 Related Research

In active learning, various criteria have been proposed to determine which in-
stances are most helpful to learn a classification model. One of the most common
is the model’s uncertainty regarding the classification of a sample. A strategy
that solely relies on this criterion is known as uncertainty sampling (US) [13, 18].
In their application of US to SVMs, Tong and Koller [20] motivated that the
goal is to approximately halve the version space through selecting instances
that lie closest to the current decision boundary of the classifier. To extend
this to multi-class problems, many methods have been proposed, for example,
’Best-versus-Second-Best’ [8, 9, 11] (also referred to as ’Margin Sampling’ [18])
or Entropy-based sampling [8, 18, 9]. Solely relying on this criterion to select
instances has been shown to be prone to being ’locked in’, ignoring possibly in-
formative instances in favor of refining the current decision boundary [18, 12].
Hence, various approaches have been proposed that, in addition to uncertainty,
also include other criteria. These include, for example, the diversity of the sam-
pled instances [2, 5] or the density around a candidate instance [3, 4]. A promising
AL strategy is Multi-class Probabilistic Active Learning (McPAL) [10], which
has shown promising results compared to other approaches. It combines the den-
sity, the class posterior probability and the number of already sampled instances
in the neighborhood of a candidate instance to estimate the potential gain of
acquiring an instance’s label. Instances that entail the highest potential gain are
selected for labeling by the strategy. This acquisition is performed in a one-by-
one fashion.
However, the selection does not have to be solely based on supervised models
but can also use unsupervised approaches. Known clustering algorithms like k-
medoid [15] or hierarchical clustering [6] as well as generative models like GMMs
[16, 7] can be used to model the structure of the data and include it in the se-
lection process.
The classification models, that are used in the process of instance selection, are
often used for training the final classifier. Tomanek & Morik [19] investigated,
to which degree the bias towards the learning algorithm used in the selection
process affects, what they call label reusability - i.e., the training of a classifier,
other than the one used for selection, on the acquired labeled data. They intro-
duced the terms of selector and consumer classifiers to describe the model used
for selecting instances, and performing classification based on them, respectively.
Contrary to their initial assumptions, they concluded that self-selection (the se-
lector and consumer classifier are the same) is in fact not in all cases the best
choice.
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3 Using GMM-based Kernels with the McPAL Strategy

Since the majority of data available in the scenario of AL is unlabeled and there-
fore carries no explicit information about the mapping of f : x 7→ y, implicit
information contained in the structure of the data becomes even more important.
The GMM ([17], Eq. 6) and RWM ([17], Eq. 7) distance measures (denoted as
∆GMM and ∆RWM ) are based on Gaussian mixture models (GMMs). A GMM
models data with a number of J multivariate Gaussian distributions3. To speed
up the training process, first k-means clustering is performed to find J clusters
in the data. Based on the samples belonging to the clusters, the initial means
and variances are computed to initialize the Gaussian distributions. Then the
components are refined, either with the Expectation Maximization (EM) or Vari-
ational Inference (VI) training method [1], using only the feature vectors x of
the samples. The GMMs used in this paper are trained with the VI method.
The result of the training is a GMM with J components, component weights
φj

4 that determine the influence of the component in the mixture, as well as the
component covariance matrices Σj . Building on such a mixture model, the GMM
[1] and RWM distance measures [17] consist of the Mahalanobis distance of two
instances a and b with respect to the covariance matrices of the mixture model,
weighted in two different ways: (1) the distance is weighted by the mixture coef-
ficients of the model (GMM-distance, Eq. 1); (2) the distance is weighted by half
the sum of the components responsibilities for the two instances (RWM-distance,
Eq. 2). Both measures include the information captured by the GMM into the
distance measure. The resulting distance is small, if both instances lie closest to
the same GMM component, and large, if their closest GMM components differ.
These distance measures are incorporated into kernel functions by substituting
the Euclidean distance in the Gaussian RBF kernel with the GMM or RWM
distance respectively [17]. The kernel functions thereby keep the parameter γ
of the RBF kernel. These kernel functions can be used in kernel-based learning
methods like SVMs or Parzen-Window kernel density estimation.

∆GMM (a, b) =

J∑

j=1

φj∆Σj
(a, b)) (1)

∆RWM (a, b) =

J∑

j=1

(
1

2
(p(j|a) + p(j|b))∆Σj (a, b)) (2)

The research question of this work is whether the inclusion of structural informa-
tion by means of such kernels improves the performance of the McPAL approach.
To examine that this work investigates two possible ways the McPAL strategy
can employ such kernels and to which extent these benefit the strategy. The first
approach of using these structure-sensitive kernel functions in combination with

3 These distributions are referred to as ’components’
4 As part of the VI training method, the weights of some components can be set close

to zero, effectively ’pruning’ them from the model

Probabilistic Active Learning with Structure-Sensitive Kernels

39



4

the McPAL strategy is incorporating them into the process of instance selection.
To this end, two changes to the method are made that are described in the fol-
lowing.
First, the GMM/RWM kernels replace the Gaussian RBF kernel in the compu-

tation of the kernel frequency estimates (denoted as
−→
k in Eq. 4), which are re-

quired by the McPAL method, by means of the Parzen-Window method. These
frequency estimates are computed in the same way as in the original McPAL
approach [10], i.e. by computing the kernel density estimates with the Parzen-
Window method, but leaving out the normalization by the number of samples.

kx,y =
∑

{(x′,y′);y′=y}
KGMM/RWM (x, x′) (3)

−→
k x = {kx,y1 , kx,y2 , · · · , kx,yn} (4)

Second, instead of using Parzen-Window estimation, the density estimates are
directly taken from the GMM used by the GMM and RWM kernels. The Parzen-
Window method places a kernel K with bandwidth h on each of the N samples
in the data set, with each of them equally contributing to the resulting density
estimate (s. Eq. 5). The GMM uses a fixed number of J multivariate GaussiansN
to model the data, the contribution of each of these components being weighted
by the mixture coefficient or component weight φ of the component (s. Eq. 6).
These changes enable the McPAL strategy to use the information provided by
the GMM and RWM kernels in the instance selection process. For the purpose of
disambiguation, this modified version of the McPAL strategy is in the following
referred to as StrucPAL.

p(x) =
1

N

N∑

i=1

Kh(x− xi) =
1

Nh

N∑

n=1

K(
x− xn
h

) (5)

p(x) =

J∑

j=1

φjN (x|µj , Σj) (6)

The second approach to use structure-sensitive kernels to improve the perfor-
mance of the McPAL strategy is by using them in the consumer classifier. This
is possible in two ways, either as ’self-selection’ or ’foreign-selection’. Tomanek
& Morik [19] use these terms to refer to, in the first case, the selector and
consumer classifiers being the same, or in the second case, the selector and con-
sumer classifiers being different. Therefore, two scenarios for using the GMM and
RWM kernels in the classification process are possible. The first is the StrucPAL
method being used with self-selection, so pwcrwm or pwcgmm act as both selector
and consumer classifier respectively. The second is that the McPAL or StrucPAL
strategy is employed for instance selection but classification is performed by a
foreign classifier which uses the GMM or RWM kernels - i.e. Parzen-Window
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classifier or a SVM.
This work aims to investigate two questions regarding the use of structural in-
formation by the McPAL method, in order to gain additional insight into what
approaches are worth exploring in future research.
The first question is whether, and to what extent, the performance of the Struc-
PAL method differs from the original McPAL method. Due to the already men-
tioned inclusion of the information of the underlying mixture model into the
instance selection process, a positive impact on the performance is expected.
The second question is if and to what extent the McPAL and StrucPAL learners
benefit from foreign-selection. The first part of this question is to investigate, how
the performance of McPAL and StrucPAL learners using self-selection compares
to using a SVM with the same kernel as the selector as consumer classifier. The
second part of this question is to investigate, how the original McPAL strategy
can benefit from consumer classifiers that use the GMM or RWM kernels.

4 Experiments

In our experiments, eight data sets from the UCI machine learning repository [14]
are used, namely australian, glass, haberman, heart, qsar-biodeg5, steel-plates-
fault6, vehicle and vertebral. Furthermore, the phoneme data set from OpenML
[21] is used. In addition to that, an artificial 2d data set referred to as blobs is
used, consisting of three Gaussians that make up the classes.
The experiments include three AL strategies: McPAL (mp), StrucPAL (sp) and
random sampling (rl). As classifiers, the Parzen-Window classifier (pwc) and
support vector machine classifier (svm) are used. The PWC and SVM classifiers
use either the Gaussian RBF, the RWM or the GMM kernels, as introduced
earlier. The kernel that the classifier uses is denoted in subscript, for example
pwcrbf . An active learner in the experiments consists of three components: the
AL strategy (al), the selector classifier (clal) and the consumer classifier (cl). In
the case of self-selection, cl and clal are identical.
Based on a set of 10 seeds for randomization, for each seed, the data sets are split
using five-fold stratified cross-validation. One fold per split is used as holdout set
to test the trained consumer classifier, while the four remaining folds are used
as training data. The initial labeled set L is initialized with one instance from
two randomly picked classes in the training data. The random choice is based
on the seed used in the current cross-validation split. Starting with L initialized
with 2 instances and the rest of the training set comprising the unlabeled set
U , pool-based AL is performed. As part of this, the labels of 60 instances in
total are acquired in a one-by-one fashion with both the selector and consumer
classifier being updated after each acquisition. Then the consumer classifier is
evaluated on the holdout set using the accuracy metric. This process is repeated
until every fold has been used as test set once. The performance scores at every
point in the AL process are averaged over all folds. After each of the 10 seeds

5 in the following abbreviated as ’qsar’
6 in the following abbreviated as ’steel’
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has been used to seed the cross-validation split, the final results are gained by
computing the average accuracy per step in the AL process and the standard
deviation of the accuracy over all seeds.
The hyperparameters of the models for each data set are determined by per-
forming an exhaustive search over a parameter grid on a subset of the data.
This subset is a stratified, seed-based7 random subsample consisting of 90 in-
stances. The 90 instances are split using three-fold stratified cross-validation,
with one fold being used to train a classifier with a given set of parameters,
while the other two folds are used to evaluate the performance of this classifier.
The small size of this tuning data set is founded in the fact, that in AL applica-
tions there is little labeled data available, therefore performing model selection
with a large tuning set would be unrealistic. However, a review of the literature
on active and semi-supervised learning did not provide a fitting way to determine
the hyperparameters without using more labeled data than would be available
in this scenario.

5 Results & Discussion

In the following, the results for the scenarios of self-selection and foreign-selection
are presented in two ways.
First, the average accuracy scores and the corresponding standard deviation is
tabulated for the different active learners on each data set. The highest accuracy
score on a data set is printed in bold font. In the case of learners scoring equally,
a lower standard deviation decides the winner. In case these are also identical,
the first place is shared by these. For each learner, the difference in accuracy
score to the highest score on each data set is computed and averaged for all data
sets. This average difference in accuracy to the winners is shown in the column
’diff ’ . Based on this difference, the learners are ranked, shown in column ’rank ’.
The second way of illustrating the results is so called learning curve plots. These
show the performance of the learners on a given data set over the entire AL
process, that is for each acquired label.

5.1 Self-Selection

First, the results of the experiments for the scenario of self-selection, shown
in Tab. 1, will be considered. In the three moments in the learning process
at 10, 20 and 30 acquired labels a good performance of the original McPAL
method can be observed. It performs best on 6 of 10 data sets at 10 sampled
instances, scoring the first rank in the comparison to the two StrucPAL variants
and random selection learners with the Parzen-Window classifier with the RBF,
GMM and RWM kernels. At 20 sampled instances, McPAL performs best on 5
data sets, scoring second rank and at 30 sampled instances it is best on 8 data

7 The seed used for the model selection was not used in the splits for the experiments
themselves.
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sets, scoring first rank again. Based on these observations a solid performance can
be attested to the McPAL strategy, although it does not manage to perform best
on the steel and vehicle, where it is beaten by random selection with only one
exception (vehicle, 10 sampled instances). The StrucPAL method only manages
to perform better than McPAL on the blobs data set at 10 and 20 sampled
instances as well as on heart at 20 sampled instances, although Fig. 1 shows an
overall better performance of StrucPAL on heart. The gap between the scores
of StrucPAL to the best performing learner on each data set varies in size, but
when averaged leads to the two StrucPAL learners taking the last two ranks in
the ranking.
Concluding the results of the self-selection scenario, the StrucPAL method did
not provide better classification performance than the original method. Based
on this observation it appears, that including the structural information from
the Gaussian mixture model in the selection process did not improve the McPAL
method.

Table 1. Mean accuracy scores and std (in brackets) after acquiring 10,20 and 30 la-
beled instances with Parzen Window Classifier (PWC), using self-selection or random-
selection. Abbreviations are explained in Sec. 4.
10 labels sampled australian blobs glass haberman heart phoneme qsar steel vehicle vertebral diff rank
pwcrbf +mp .64(±0.08) .81(±0.09) .66(±0.07) .69(±0.08) .77(±0.06) .74(±0.03) .62(±0.09) .55(±0.06) .41(±0.03) .61(±0.07) .032 1
pwcgmm + sp .64(±0.09) .87(±0.04) .56(±0.07) .68(±0.07) .67(±0.1) .49(±0.12) .60(±0.11) .57(±0.07) .36(±0.05) .54(±0.08) .084 6
pwcrwm + sp .63(±0.11) .87(±0.04) .54(±0.07) .68(±0.06) .76(±0.08) .62(±0.12) .57(±0.1) .55(±0.08) .38(±0.03) .53(±0.08) .069 5
pwcrbf + rl .69(±0.08) .78(±0.11) .62(±0.08) .65(±0.08) .67(±0.1) .69(±0.05) .65(±0.07) .68(±0.06) .39(±0.05) .60(±0.08) .040 2
pwcgmm + rl .67(±0.09) .77(±0.1) .58(±0.1) .64(±0.06) .66(±0.09) .68(±0.05) .62(±0.06) .70(±0.07) .41(±0.06) .58(±0.08) .051 3
pwcrwm + rl .66(±0.1) .77(±0.1) .54(±0.09) .64(±0.06) .68(±0.11) .71(±0.04) .60(±0.07) .69(±0.07) .39(±0.05) .60(±0.07) .054 4
20 sampled labels australian blobs glass haberman heart phoneme qsar steel vehicle vertebral diff rank
pwcrbf +mp .68(±0.08) .88(±0.05) .72(±0.05) .73(±0.05) .75(±0.06) .74(±0.03) .72(±0.04) .60(±0.05) .46(±0.03) .67(±0.06) .033 2
pwcgmm + sp .66(±0.09) .90(±0.02) .58(±0.05) .69(±0.04) .74(±0.08) .56(±0.11) .54(±0.1) .57(±0.07) .43(±0.04) .62(±0.06) .099 6
pwcrwm + sp .64(±0.09) .90(±0.01) .54(±0.06) .71(±0.04) .78(±0.07) .68(±0.09) .51(±0.11) .55(±0.08) .43(±0.03) .61(±0.07) .093 5
pwcrbf + rl .73(±0.05) .86(±0.04) .70(±0.07) .71(±0.04) .73(±0.07) .72(±0.03) .69(±0.05) .74(±0.04) .48(±0.05) .65(±0.06) .027 1
pwcgmm + rl .72(±0.05) .86(±0.04) .65(±0.07) .66(±0.06) .70(±0.07) .72(±0.04) .64(±0.06) .78(±0.04) .51(±0.06) .63(±0.06) .041 3
pwcrwm + rl .71(±0.07) .86(±0.04) .63(±0.08) .66(±0.06) .73(±0.1) .73(±0.03) .63(±0.06) .75(±0.04) .45(±0.05) .64(±0.06) .049 4
30 sampled labels australian blobs glass haberman heart phoneme qsar steel vehicle vertebral diff rank
pwcrbf +mp .76(±0.04) .90(±0.01) .76(±0.04) .74(±0.03) .79(±0.04) .75(±0.02) .74(±0.04) .69(±0.03) .51(±0.02) .69(±0.05) .020 1
pwcgmm + sp .69(±0.07) .90(±0.02) .58(±0.05) .70(±0.03) .75(±0.08) .63(±0.09) .59(±0.08) .57(±0.07) .46(±0.03) .66(±0.05) .100 5
pwcrwm + sp .65(±0.08) .89(±0.02) .56(±0.07) .70(±0.04) .78(±0.07) .70(±0.06) .57(±0.09) .55(±0.08) .46(±0.03) .65(±0.07) .102 6
pwcrbf + rl .75(±0.04) .88(±0.03) .74(±0.06) .72(±0.04) .75(±0.06) .74(±0.02) .71(±0.05) .77(±0.04) .52(±0.05) .68(±0.05) .027 2
pwcgmm + rl .73(±0.06) .88(±0.03) .70(±0.07) .67(±0.05) .72(±0.08) .73(±0.03) .67(±0.05) .82(±0.04) .57(±0.06) .67(±0.05) .037 3
pwcrwm + rl .73(±0.06) .88(±0.03) .67(±0.07) .67(±0.05) .75(±0.09) .73(±0.02) .65(±0.06) .78(±0.04) .48(±0.06) .67(±0.05) .052 4

5.2 Foreign-Selection

How does foreign-selection affect the result of the active learner? Tab. 2 shows
the accuracy scores at the stages of 10, 20 and 30 sampled instances. For every
AL strategy, self-selection is compared to the use of an SVM (with the same
kernel as the selector) as consumer classifier.
As originally pointed out by Tomanek and Morik [19], it can be observed that
foreign-selection can be indeed beneficial with regard to classification perfor-
mance. However, the extent of this varies in the experiments, ranging from a
difference in accuracy of 0.01 to 0.08 and is limited to some of the data sets.
Based on the averaged difference in score to the best performing method, self-
selection scores better than foreign selection in all three segments. This analysis,
however, only included a consumer classifier (SVM), that uses the same kernel
function as the selector. In order to investigate, how McPAL learners perform, if

Probabilistic Active Learning with Structure-Sensitive Kernels

43



8

0 10 20 30 40 50 60
# of labeled instances

0.5

0.6

0.7

0.8

0.9

1.0
ac

cu
ra

cy
_s

co
re

dataset: phoneme
PWC_rbf+McPAL+PWC_rbf
PWC_rwm+StrucPAL+PWC_rwm
PWC_gmm+StrucPAL+PWC_gmm
PWC_rbf+RandomLearner+PWC_rbf
PWC_rwm+RandomLearner+PWC_rwm
PWC_gmm+RandomLearner+PWC_gmm

0 10 20 30 40 50 60
# of labeled instances

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

_s
co

re

dataset: heart
PWC_rbf+McPAL+PWC_rbf
PWC_rwm+StrucPAL+PWC_rwm
PWC_gmm+StrucPAL+PWC_gmm
PWC_rbf+RandomLearner+PWC_rbf
PWC_rwm+RandomLearner+PWC_rwm
PWC_gmm+RandomLearner+PWC_gmm

Fig. 1. Learning curves resulting from self-selection on the phoneme and heart data
sets

paired with consumer classifiers using the GMM and RWM kernels, a separate
tabulation is shown in Tab. 3.
Although the self-selection learner with McPAL+pwcrbf scores the first rank
in all three stages, it can be observed that McPAL can benefit from different
consumer classifiers. At the stage of 10 sampled instances, an SVM with GMM
kernel scores a higher accuracy on the steel (+0.1) and vehicle (+0.07) data sets,
with minor gains being provided by an SVM with RBF kernel (+0.01 on qsar,
+0.02 on glass) and a SVM with RWM kernel (+0.02 on haberman). However,
these gains are accompanied by worse performance than McPAL on other data
sets. The advantage provided by the foreign classifiers reduces in the stages of 20
and 30 sampled instances, with svmgmm still showing good gains at 20 sampled
instances (+0.05 on steel, +0.1 on vehicle).
Fig. 2 shows the learning curves on the vehicle and steel data sets. While on ve-
hicle a solid advantage of svmgmm, svmrbf and pwcgmm over McPAL in terms
of accuracy can be observed, the development on steel is a different one. While
the svmgmm and svmrwm learners perform well due to a stagnating but better
performance in the early phase, they fail to exploit the additionally acquired
labels in the fashion of the other learners, resulting in a slight but increasing
advantage for the learners using GMM-based PWCs later, which are in the last
phase of the learning process surpassed by svmrbf .
Concluding the results of the foreign-selection scenario it can be summarized,
that although self-selection McPAL has performed solidly in the experiments, the
results indicate that the use of classifiers with GMM-based kernels in this sce-
nario shows potential and the general use of foreign-selection motivates further
research.
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Table 2. Mean accuracy scores and std (in brackets) of McPAL and StrucPAL learners
using either self-selection or a SVM with the same kernel as the selector for classifica-
tion.
10 sampled labels australian blobs glass haberman heart phoneme qsar steel vehicle vertebral diff rank
pwcrbf +mp .64(±0.08) .81(±0.09) .66(±0.07) .69(±0.08) .77(±0.06) .74(±0.03) .62(±0.09) .55(±0.06) .41(±0.03) .61(±0.07) .006 1
svmrbf +mp+ pwcrbf .60(±0.08) .80(±0.09) .68(±0.07) .69(±0.07) .62(±0.09) .71(±0.04) .63(±0.09) .56(±0.06) .43(±0.04) .57(±0.12) .027 2
pwcgmm + sp .64(±0.09) .87(±0.04) .56(±0.07) .68(±0.07) .67(±0.1) .49(±0.12) .60(±0.11) .57(±0.07) .36(±0.05) .54(±0.08) .009 1
svmgmm + sp+ pwcgmm .59(±0.06) .85(±0.05) .54(±0.08) .63(±0.06) .61(±0.08) .51(±0.12) .57(±0.13) .64(±0.01) .36(±0.05) .43(±0.12) .034 2
pwcrwm + sp .63(±0.11) .87(±0.04) .54(±0.07) .68(±0.06) .76(±0.08) .62(±0.12) .57(±0.1) .55(±0.08) .38(±0.03) .53(±0.08) .016 1
svmrwm + sp+ pwcrwm .61(±0.11) .84(±0.05) .53(±0.08) .73(±0.02) .75(±0.07) .58(±0.11) .60(±0.11) .63(±0.05) .37(±0.05) .49(±0.13) .016 1

20 labels sampled australian blobs glass haberman heart phoneme qsar steel vehicle vertebral diff rank
pwcrbf +mp .68(±0.08) .88(±0.05) .72(±0.05) .73(±0.05) .75(±0.06) .74(±0.03) .72(±0.04) .60(±0.05) .46(±0.03) .67(±0.06) .007 1
svmrbf +mp+ pwcrbf .66(±0.09) .87(±0.04) .74(±0.05) .72(±0.04) .66(±0.1) .72(±0.03) .72(±0.06) .60(±0.05) .51(±0.04) .64(±0.07) .018 2
pwcgmm + sp .66(±0.09) .90(±0.02) .58(±0.05) .69(±0.04) .74(±0.08) .56(±0.11) .54(±0.1) .57(±0.07) .43(±0.04) .62(±0.06) .009 1
svmgmm + sp+ pwcgmm .63(±0.08) .88(±0.02) .57(±0.06) .67(±0.04) .70(±0.09) .56(±0.11) .45(±0.13) .64(±0.01) .45(±0.05) .59(±0.09) .024 2
pwcrwm + sp .64(±0.09) .90(±0.01) .54(±0.06) .71(±0.04) .78(±0.07) .68(±0.09) .51(±0.11) .55(±0.08) .43(±0.03) .61(±0.07) .011 1
svmrwm + sp+ pwcrwm .62(±0.1) .88(±0.02) .54(±0.08) .73(±0.02) .75(±0.09) .62(±0.09) .50(±0.13) .63(±0.05) .41(±0.05) .62(±0.07) .016 2

30 sampled labels australian blobs glass haberman heart phoneme qsar steel vehicle vertebral diff rank
pwcrbf +mp .76(±0.04) .90(±0.01) .76(±0.04) .74(±0.03) .79(±0.04) .75(±0.02) .74(±0.04) .69(±0.03) .51(±0.02) .69(±0.05) .008 1
svmrbf +mp+ pwcrbf .74(±0.07) .90(±0.01) .76(±0.05) .73(±0.04) .79(±0.06) .72(±0.02) .75(±0.05) .67(±0.04) .58(±0.04) .65(±0.04) .012 2
pwcgmm + sp .69(±0.07) .90(±0.02) .58(±0.05) .70(±0.03) .75(±0.08) .63(±0.09) .59(±0.08) .57(±0.07) .46(±0.03) .66(±0.05) .01 1
svmgmm + sp+ pwcgmm .66(±0.06) .90(±0.02) .57(±0.06) .69(±0.03) .72(±0.09) .61(±0.09) .49(±0.15) .65(±0.02) .48(±0.04) .63(±0.05) .023 2
pwcrwm+sp .65(±0.08) .89(±0.02) .56(±0.07) .70(±0.04) .78(±0.07) .70(±0.06) .57(±0.09) .55(±0.08) .46(±0.03) .65(±0.07) .012 1
svmrwm + sp+ pwcrwm .63(±0.08) .89(±0.02) .54(±0.08) .73(±0.03) .77(±0.07) .63(±0.09) .53(±0.13) .63(±0.05) .40(±0.05) .66(±0.06) .022 2

Table 3. Results with the McPAL strategy with PWC and SVM consumer classifiers
with different kernels
10 sampled labels australian blobs glass haberman heart phoneme qsar steel vehicle vertebral diff rank
pwcrbf +mp .64(±0.08) .81(±0.09) .66(±0.07) .69(±0.08) .77(±0.06) .74(±0.03) .62(±0.09) .55(±0.06) .41(±0.03) .61(±0.07) .021 1
pwcgmm +mp .63(±0.09) .79(±0.1) .60(±0.07) .68(±0.07) .75(±0.07) .73(±0.04) .58(±0.08) .57(±0.07) .44(±0.04) .61(±0.07) .033 2
pwcrwm +mp .63(±0.09) .79(±0.1) .59(±0.08) .67(±0.08) .74(±0.09) .73(±0.03) .55(±0.09) .56(±0.08) .40(±0.03) .61(±0.07) .044 4
svmrbf +mp .60(±0.08) .80(±0.09) .68(±0.07) .69(±0.07) .62(±0.09) .71(±0.04) .63(±0.09) .56(±0.06) .43(±0.04) .57(±0.12) .042 3
svmgmm +mp .60(±0.08) .79(±0.1) .61(±0.09) .66(±0.07) .69(±0.08) .69(±0.04) .53(±0.13) .65(±0.0) .47(±0.05) .54(±0.12) .048 5
svmrwm +mp .62(±0.11) .78(±0.1) .61(±0.09) .71(±0.07) .69(±0.09) .71(±0.04) .52(±0.13) .63(±0.05) .38(±0.05) .57(±0.09) .049 6
20 sampled labels australian blobs glass haberman heart phoneme qsar steel vehicle vertebral diff rank
pwcrbf +mp .68(±0.08) .88(±0.05) .72(±0.05) .73(±0.05) .75(±0.06) .74(±0.03) .72(±0.04) .60(±0.05) .46(±0.03) .67(±0.06) .017 1
pwcgmm +mp .68(±0.09) .87(±0.05) .68(±0.07) .70(±0.05) .73(±0.07) .74(±0.03) .66(±0.06) .61(±0.08) .50(±0.04) .66(±0.06) .029 3
pwcrwm +mp .68(±0.09) .87(±0.05) .65(±0.07) .70(±0.06) .72(±0.09) .73(±0.02) .64(±0.07) .63(±0.05) .45(±0.03) .66(±0.06) .039 5
svmrbf +mp .66(±0.09) .87(±0.04) .74(±0.05) .72(±0.04) .66(±0.1) .72(±0.03) .72(±0.06) .60(±0.05) .51(±0.04) .64(±0.07) .028 2
svmgmm +mp .65(±0.1) .87(±0.04) .69(±0.08) .69(±0.06) .71(±0.08) .71(±0.04) .63(±0.09) .65(±0.0) .56(±0.04) .61(±0.07) .035 4
svmrwm +mp .68(±0.09) .87(±0.04) .65(±0.06) .71(±0.04) .71(±0.09) .72(±0.03) .62(±0.09) .65(±0.0) .38(±0.05) .65(±0.06) .048 6
30 sampled labels australian blobs glass haberman heart phoneme qsar steel vehicle vertebral diff rank
pwcrbf +mp .76(±0.04) .90(±0.01) .76(±0.04) .74(±0.03) .79(±0.04) .75(±0.02) .74(±0.04) .69(±0.03) .51(±0.02) .69(±0.05) .010 1
pwcgmm +mp .75(±0.04) .90(±0.01) .74(±0.06) .71(±0.05) .75(±0.06) .75(±0.02) .67(±0.06) .69(±0.04) .55(±0.03) .68(±0.05) .024 3
pwcrwm +mp .75(±0.04) .89(±0.01) .69(±0.07) .70(±0.05) .75(±0.08) .74(±0.02) .66(±0.07) .69(±0.04) .49(±0.03) .68(±0.04) .039 4
svmrbf +mp .74(±0.07) .90(±0.01) .76(±0.05) .73(±0.04) .79(±0.06) .72(±0.02) .75(±0.05) .67(±0.04) .58(±0.04) .65(±0.04) .014 2
svmgmm +mp .72(±0.07) .90(±0.01) .74(±0.07) .70(±0.05) .75(±0.07) .71(±0.05) .63(±0.08) .65(±0.0) .6(±0.04) .63(±0.05) .040 5
svmrwm +mp .74(±0.06) .89(±0.02) .64(±0.07) .71(±0.04) .75(±0.08) .72(±0.03) .61(±0.09) .65(±0.0) .39(±0.05) .67(±0.05) .066 6
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Fig. 2. Learning curves of McPAL learners using different consumer classifiers on the
vehicle and steel data sets
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6 Conclusion

The experiments explored two possible approaches to incorporate the informa-
tion of a GMM into the McPAL method. The first approach, using two GMM-
based kernel functions in the instance selection process, has shown to not provide
an advantage regarding the performance compared to the original method. In
total, the original McPAL selection strategy with pwcrbf both as selector and
consumer classifier, has shown to perform better than the StrucPAL learners,
with random sampling performing better than both methods in few cases. Es-
pecially data sets like australian, glass, vehicle and vertebral proofed harder for
the StrucPAL learners. One possible explanation for this is that the assumption
of the GMM, i.e. that the subpopulations in the data representing the different
classes fit a multivariate Gaussian distribution, does not hold in these cases.
The second approach, using the GMM-based kernel functions in the consumer
classifiers of a foreign-selection scenario, showed potential gains regarding classi-
fication accuracy. Using a svmgmm as consumer classifier for the original McPAL
learner has shown to improve the classification performance on the steel and ve-
hicle data sets while performing slightly worse on others. The fact, that learners
using the StrucPAL method and PWC with the GMM or RWM kernel gener-
ally did not benefit from using an SVM with these kernels proves interesting.
It appears that either the use of the same kernel function did not mitigate the
adverse effect foreign-selection seems to entail in this case, or that the labeled
set sampled by StrucPAL is simply less fit for classification with svmgmm or
svmrwm.
Regarding the performance of the SVM classifiers used in the experiments, it
has to be considered that the model selection procedure employed in the exper-
iments is admittedly weak. Therefore, it is possible that the hyperparameters
used in the experiments, not only for the SVMs but also the other classifiers,
are suboptimal. Considering the restrictive nature of the AL setting regarding
the availability of labeled data, this circumstance is acceptable, since using more
data for model selection would be even more unrealistic in this setting.
It appears that the McPAL strategy already performs very well at selecting the
most useful instances and including the information of the GMM does not add
to this, in some cases even hindering a good selection. Based on these results it
appears that work on the McPAL strategy in the future should focus on improv-
ing the method regarding other aspects, for example imbalanced data.
However, using other classifiers to exploit the labeled set sampled with the Mc-
PAL strategy has shown to be of possible gain, in order to improve the overall
classification performance of the active learner. The use of SVMs as consumer
classifiers showed to have potential, although determining fitting hyperparame-
ters in the setting of active learning still poses a problem, that should be inves-
tigated further.
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Abstract. In real-world applications the information for previously
unknown categories (labels) may come from various sources, often but not
always humans. Therefore, a new problem arises: The labels are subject to
uncertainty. For example, the performance of human annotators depends
on many factors: e.g., expertise/experience, concentration/distraction,
fatigue level, etc. Furthermore, some samples are difficult for both experts
and machines to label (e.g., samples near the decision boundary). Thus,
one question arises: How can one make use of annotators that can be
erroneous (uncertain oracles)? A first step towards answering this ques-
tion is to create experiments with humans, which involves a high time
and money effort. This article addresses the following challenge: How
can the expertise of erroneous human annotators be simulated? First, we
discuss situations in which humans are prone to error. Second, we present
methods for conducting active learning experiments with simulated un-
certain oracles that possess various degrees of expertise (e.g., local/global
or class/region dependent).

Keywords: Active Learning, Uncertain Oracles

1 Introduction

Consider the following problem: we have access to a large set of unlabeled images
and we have the possibility to buy labels for any data point, Our first goal is to
train a classifier with the highest possible accuracy. A possible approach is to
label all the images and then train the classifier on the labeled data set. Now,
suppose we have a limited budget, which doesn’t allow us to label the all images.
Our second goal is to keep the costs to a minimum. Thus, we need a strategy
to determine which images should be labeled. A naive strategy would be to
select the images at random. But, we can do better than that, if we make use
of a selection strategy that selects the most informative images. Precisely at
this point, active learning (AL) comes in, more specifically pool-based active
learning (PAL). The learning cycle is presented in Figure 1: there is a large set
of unlabeled data and our goal is to train a model (e.g., a classifier). Thus,
we need to select the most informative data points based on a selection
strategy and present them to an annotator (e.g., a domain expert), generally

49



2 Adrian Calma and Bernhard Sick

called oracle, for labeling. The labeled samples are added to the training set
(the set with labeled data), the classifier is updated and, depending on the
chosen stopping criteria (e.g., is there still money in our budget?), we continue
to ask for more labels or not.

Fig. 1. Pool-based active learning cycle.

At this point we can ask ourselves: Are the labels provided by the human
annotators correct? Probably not, as we can assume that humans are prone
to error (Section 2). Thus, a new question arise: How can we deal with
uncertainty regarding the labels? A first step towards answering the previous
question is to develop techniques for simulating human experts prone to error.
As we assume that they are unsure regarding the classification decision, we call
these annotators uncertain oracles. Thus, this article focuses on presenting:

– cases in which the uncertain oracle misclassifies data (see Section 3) and
– techniques for simulating uncertain oracles in AL (see Section 4).

In the remainder of this article, we first present the possible causes for
erroneous labels and explain what we mean by the term “uncertainty” (Section 2).
Then, we present and categorize various types of expertise (Section 3). In Section 4,
we introduce possible approaches for simulating error prone oracles. Then, related
work will be summarized in Section 5. Finally, Section 6 concludes the article.

2 Motivation – The Problem

By now, we assumed that the answers provided by the oracles are always right. But,
it is obvious that they are not always right. On the one hand, the performance
of human annotators (human oracles) depends on multiple factors, such as:
expertise, experience, level of concentration, level of interest, or level of
fatigue [1]. On the other hand, the labels may come from simulations or test
stands. Once again, it is justifiable to assume that due to imperfect simulations,
sensor noise, or transmission errors, the labels are subject to uncertainty.

Depending on the difficulty of the labeling task, the oracles might be right
in case of “easy” classification problems. The more difficult a classification task
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is, the likelier it is that the oracle has a higher degree of doubt (i.e., is more
uncertain) about its answer. Thus, the label uncertainty depends on the difficulty
of the classification task. That is, the number of steps an annotator has to perform
for determining the right class, the designated time, and the risk involved by
misclassification. This factors come in addition to the previously presented sources
of uncertainty, such as required knowledge for problem understanding, experience
regarding similar classification problems or labeling tasks, concentration, or
tiredness.

What do we mean by “uncertainty”? When humans are asked to provide
information about an actual situation, the confidence regarding the given answer
depends on diverse factors, such as the difficulty/complexity to assess that
information, previous experience, or knowledge. Certainly, there are circumstances
when we cannot state our answer with absolute confidence. Thus, we tend to
add additional information about the quality of our answer, i.e., to quantify and
qualify our confidence [2].

On these grounds, we cannot assume that the oracles are omniscient, but we
have to soften the assumption of omniscience: An oracle may be wrong. In this
context, the “uncertainty” is the degree of confidence for given label. Consequently
we ask ourself, how can we make use of the uncertain oracles, especially, how can
we exploit the oracle’s firm knowledge?

3 Human Expertise

When an expert has worked for a long period of time on a classification task,
he posses more “experience”. That is, he has seen and labeled more data than
an oracle that just started to work on the labeling task. Therefore, such an
oracle possesses global expertise about the classification problem. On the other
hand, depending on how difficult the classification problem is or on the degree of
expertise and experience, the oracle may bear only limited knowledge about the
learning task, i.e., local expertise.

At this point, we assume that the expertise of an oracle (its degree of uncer-
tainty) is time invariant.

3.1 Global Expertise

The annotators have a global expertise in the sense that their knowledge is not
limited to a certain region of the input space or to a specific class. They “know”
the problem in all its aspects. Still, they may possess different levels of expertise.
Moreover, samples exist that are hard to label for both the learning system as
well as for the oracles. For example, samples that lie near the decision boundary
of a classifier are good examples for data points that might be difficult to label
by the oracle and the active learner.

From a practical point of view, we may ask the oracles to provide additional
information when they provide labels for samples. This is required for assessing
their certainty, or rather their uncertainty regarding the provided answer. Such
additional information may include asking for [1]:

Simulation of Annotators for Active Learning: Uncertain Oracles
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1. a degree of confidence for one class,
2. membership probabilities for each class,
3. a difficulty estimate, or
4. a relative difficulty estimate for two data points.

In the first case, a sample is presented to the oracle, for example an image.
The oracle is asked to provide a class label for the sample and to estimate his
degree of confidence. Further help regarding the degree of confidence may be
provided: e.g. a a graphical control element with which the oracle sets a certainty
value by moving an indicator on a predefined scale (i.e., a slider). Thus, a possible
answer may look like “I select class «cat» and I rate my certainty 3 on a scale
from 1 to 4, where 4 is the highest score”.

Another possibility is to ask the oracle to provide class estimates for each of
the possible categories. Given an 3-class classification problem, an answer may
be “The self estimated probability for the first class is 0%, for the second class
30%, and for the third class 70%”.

The last two cases address cases where the oracle has to estimate how difficult
it was for him to label a specific data point. Possible answer may look like “I
choose class «cat» and it was hard for me to determine it”, if it was asked to
label only one sample, or “It was easier for me to label the image depicting a
«cat» than the one showing a «liger»”, if asked to label to images simultaneously.

3.2 Local Expertise

The oracles possess a local expertise in the sense that they do not have enough
“experience”, they can only recognize specific classes, they are more reliable for
specific regions of the input space, or for certain features. That is, the human
annotators are experts for:

1. different classes,
2. different regions of the input space, or
3. different dimensions of the input space (i.e., features, attributes).

We assume that, in some applications, the oracles have not only diverse
degrees of experience and expertise, but they have various levels of proficiency
for different parts of the classification problem. For example, the oracle may be
more confident and adept in detecting some certain classes. The quality of the
given answers and his confidence may vary over the regions of the input space or
it may depend on the considered features (dimension of the input space).

It is not required to change the way the active learner queries new labels. The
query approaches described in Section 3.1 can be adopted for this case too.

3.3 Disparate Features

Up to this point we assumed that the oracle and the active learner are considering
the same features for solving the classification problem. But, this is not always
the case. For example, complex processes happen in our brains when we examine
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an image. It is hard to say which “features” we consider when trying to recognize
or evaluate the content of that specific image. Still the active learner “views” the
same image, but it may consider additional features such as histograms or apply
filters (e.g. anisotropic diffusion [3] or median [4] filters) or transformations (e.g.
Fourier [5] or Hough [6] transform) on the image. Obviously, we can provide
these additional information to the oracles, but the active learner might not have
access to all features that were “extracted” by the oracles.

Once again, the answers expected from oracles can be implied from Section 3.1.
But, you may ask yourself why we do not ask the oracle for additional information
regarding the features that it considers for its decision. As we focus on classification
tasks, we do not consider it in this work, but it is definitely an interesting research
topic, commonly referred to as active feature selection [7].

4 Simulate Error Prone Annotators

A first step towards exploiting the knowledge of an uncertain oracle would be to
analyze how the current AL paradigms perform in combination with multiple
oracles. But, such experiments are costly both in terms of money and time.
If we are able to successfully simulate uncertain oracles, then we can better
investigate the performance of the selection strategies and of the classifiers
without generating additional costs in this research phase. Moreover, based
on the gathered knowledge from the investigation of current active learning
techniques in a dedicated collaborative interactive learning (D-CIL) context,
we can develop new ones, that take the uncertainty into consideration. That
brings us to the following questions: how can we simulate error prone annotators
(uncertain oracles)?

In the following, we will describe different approaches for simulating the
uncertain oracles.

4.1 Omniscient Oracle

For the sake of completeness, we shortly describe how an omniscient oracle can be
simulated and what we understand under experience in this context. Simulating
this type of oracle is straight forward: It returns the true labels of the samples.
That is, the labels are not manipulated in any way.

How can we simulate the experience? We define the experience as the
number of samples the uncertain oracle has already seen and labeled. Thus,
when we consider the complete data set for training a classifier (i.e., supervised
learning) we can simulate an uncertain oracle with maximal global experience.
Global, in the sense that the expertise is not limited to a region of the input
space or to a specific class.

4.2 Uncertain Oracle with Global Expertise

At first, we concentrate on how to simulate uncertain oracles with global expertise
and the same degree of experience. We assume that the labels near the decision
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boundary of the classifier are hard to classify for both the human expert (human
oracle) as well as for the classifier. Thus, we can simulate an uncertain oracle by
randomly altering (changing) the classes of the samples lying near the decision
boundary. A legit question may arise: What is the “right” decision boundary? We
do not know, but we can estimate it. As one of the goals of active learningis to
be as good as a learner trained in a supervised way, we can train a classifier in a
supervised way (i.e., overall data set). The decision boundary resulted from this
classifier trained can be used to determine the samples for which the labels are
altered.

The next challenge is to simulate oracles that have different levels of experience.
For example, the oracle may have just started labeling samples for this type
of problem. Thus, they have only a labeled few samples and, of course, their
experience is based on a small number of data. One possible way to simulate its
“experience” is to reduce the number of samples on which the classifier is trained.
As the classifier is used as a model of the experience, by reducing the number of
samples we increase the level of uncertainty. By doing so, we simulate an oracle
that has little experience. Depending on the reduction factor, uncertain oracles
with different levels of experience can be simulated. Moreover, if we can split
the data in such a way, that the training set of the classifier used to simulate
the uncertain oracle is larger than the pool of unlabeled data. Thus, the data
from which the uncertain oracles gathered their experience is larger than the
data from which the active learner can select samples for labeling, resulting in a
simulated oracle with a higher degree of expertise.

Another possibility to simulate uncertain oracles with different levels of
experience is to alternate the parameter values of the classifiers. For example, we
can simulate the expertise of an uncertain oracle with a classifier trained with
default parameters. For a better expertise, we can imply heuristics (e.g., grid
search) to find suitable parameters for the classifiers.

Furthermore, the expertise can be simulated by different types of classifiers.
We can use generative or discriminative classifier for simulating the expertise of
an expert.

Last but not least, we can add noise to the feature values. Of course, this is
not always possible, as it depends on the type of feature (i.e., nominal, continuous,
ordinal, etc.) and on the values range. By doing so, we can simulate uncertain
oracles that have an experience built on similar samples.

In a nutshell, we can simulate oracles with global and various degrees of
expertise by

– modifying (altering) the classes of the samples lying near the decision boun-
dary,

– training different classifier types for various uncertain oracles, and
– training a classifier
• on training sets of different size (more or less samples than in the pool of

unlabeled data),
• using different parametrization strategies and parameter sets, or
• adding noise to the feature values (if possible and if it makes sense).

Simulation of Annotators for Active Learning: Uncertain Oracles
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Additionally, any combination of the previous simulation can be implied. For
example, if we want to simulate an oracle with little global expertise based on
similar samples, we can reduce the training set of the classifier and add noise to
the feature values.

4.3 Uncertain Oracle with Local Expertise

The expertise of an oracle can be restricted to a certain class or to a specific
region of the input space. Thus, to simulate a better expertise with respect to one
or more classes of our choice, we can change the labels of the samples belonging
to the classes for which we would like to simulate a little (or no) expertise. It is
also possible to exclude the samples belonging to one class, which translates to
“the uncertain oracle has no expertise regarding this specific class”. One possible
approach is to train a generative classifier on these data. The resulting classifier
estimates the processes that are supposed to generate the data, i. e. one process
generates samples belonging to one class. That is, a process generates samples
belonging to only one class. Therefore, we can artificially change the labels of the
estimated processes, which results in an erroneousness classification of samples
that were assumed to be generated by that process.

The expertise of the uncertain oracles may be restricted to a specific region
of the input space. Depending on the feature values, the labeling quality can
suffer. For example, an uncertain oracle is more accurate regarding samples that
lie in regions of the input space, which have been previously seen or learned by
the oracle. We propose two ways to simulate the local expertise: (1) by using
various classifier types and (2) by deliberately altering the class affiliations of the
samples lying in those regions.

By using different classifier types, the regions of the input space are modeled
in different ways and, thus, the result of the classification may vary.

By modifying the classes of the samples lying in specific regions of the input
space, the result of the classifier is modified. That is, for samples lying in these
regions, the expertise of the uncertain oracle is diminished.

The difference between class based experience and region based experience is
showed in Figure 2. Here, we have a region of the input space where two classes
strongly overlap, green ◦’s and blue +. If we assume that a human expert has
firm knowledge about class green ◦, then he will probably label the samples
that belong to the green class correctly and the others not (higher error rate
for blue + and red 4). On the other had, assuming that the oracle correctly
labels samples in a given region of the input space leads us to the conclusion
that it labels correctly all the samples in the specified region. For example, the
uncertain oracle has a region based expertise for samples having feature values
∈ [−1.5, 1.5], will lead to correct class affiliation for samples lying in this region.
In this concrete case, samples lying in the square defined by (−1.5,−1.5) and
(1.5, 1.5) and belonging to either class are labeled correctly.

An overview of the introduced simulation methods is presented in Figure 3.
The core of the simulation techniques is the assumption regarding which features
are considered. The described simulation methods can be applied for both cases:
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Fig. 2. Samples belonging to three classes (green ◦’s, blue +’s, and red 4)’s depicted
in the input space, whereby the processes generating samples belonging to green ◦’s
and blue +’s strongly overlap.

when the uncertain oracle considers the same features as the active learner and
when not.

4.4 Motivating Example: Generative Classifier based Simulation

One possible way to simulate the expertise of an uncertain oracle is by means of
a generative classifier, e.g. a classifier based on mixture models, which is based
on a probabilistic mixture modeling approach. That is, for a given D-dimensional
input sample x′ we can compute the posterior distribution p(c|x′), i.e., the
probabilities for class c membership given the input x′. To minimize the risk of
classification errors we then select the class with the highest posterior probability
(cf. the principle of winner-takes-all). Thus, the “uncertainty” can be computed
as 1 − p(c′|j), where c′ = argmaxc p(c|j). In case of other classifier types (e.g.,
Support Vector Machines), Platt scaling [8] can be used to transform the outputs
into probability distributions.

5 Related Work

In [9], the authors simulate oracles with different types of accuracies: 10% of
samples are incorrect, 20% unknown, and 70% uncertain knowledge. k-means
clustering is implied in [10] to generate the concepts and to assign the oracles
to different clusters, in order to simulate the experience (in this article called
“knowledge sets”). Clustering is also used in [11], where some clusters represent
regions for which the oracles give unsure as feedback. Virtual oracles for binary
classification, with different labeling qualities, controlled by two parameters that

Simulation of Annotators for Active Learning: Uncertain Oracles
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Fig. 3. Types of expertise and possible simulation practices.

represent the label accuracy regarding the two classes are presented in [12]. In [13],
a uniform distribution is implied to simulate various behavior of the oracles.
Randomly flipping labels with a specific probability [14] and ranges for the noise
rate [15] are also applied to simulate uncertain oracles. A Gauss distribution [16]
has also been use to simulate the expertise of oracles. But also multiple oracles
have been simulated, where their label quality does not vary [17].

6 Conclusion

In this article, we addressed a challenge in the field of AL and, especially, in
the field of D-CIL [1], where oracles might be wrong for various reasons. Thus,
the queried labels are subject to uncertainty. The research regarding uncertain
oracles is still in its infancy, so we proposed simulation methods for uncertain
oracles in order to help the research go further. The simulation methods will help
investigate the performance of the current AL techniques and understand their
advantages and disadvantages. Moreover, new questions for future research arise:
How can we exploit the uncertain oracles? Is it necessary to re-query labels for
already labeled samples? How can we learn (model) the expertise of an uncertain
oracle? How do we decide whether the uncertain oracle is erroneous or the process
to be learned are nondeterministic? How do we decide whom to ask next?
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1 Introduction

Studies on Massive Open Online Courses (MOOCs) users discuss the existence
of typical profiles and their impact on the learning process of students. One of
the concerns when creating a new MOOC is knowing how the users behave when
going through the contents. We can identify either quantitative methods that
allow you to infer hardly interpretable groups of similar behaviour[1] or hardly
context-transposable qualitative methods[2]. Our ambition is to find an efficient
way to identify the behavioural pattern of interest to a given human expert.
Within the #MOOCLive project3, we developed a mix-method to match the
quantitative interpretation to the context needs.

2 Methodology

We tackled the following three problems in order to achieve our goal.

– The definition of a quantitative metric to compare behaviours
– The inference of qualitative sets behaviours from existing ones and test their

reliability for describing the reality.
– The convergence between the quantitative-based clustering and the qualita-

tive sets of behaviour to classify the users accordingly

In order to achieve our goal we define three main tasks. We start by quantifying
the interest of users for the platform’s activity. This will allow us to define a
distance between their behaviours. Then, we iteratively make hypothetical class
definitions and test how well they fit the existing population. This is repeated
until both the classifier and the classes suggested by the process are deemed
satisfactory. This process’ breakdown is represented in Fig. 1.

1. Quantitative modelling of the user: We define the structure of the
MOOC as a Markovian decision process framework. Let H be the history of
actions the user performed on the platform. We define the gain function ĜH

of a user as the expected value of a categorical soft-max probability distri-
bution over SGF , a Sample from the space of all possible Gain Functions.

3 #MOOCLive Virchow-Villermé ANR-15-IDFN-0003-04
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The value associated to each element of this sample is the sum of rewards
that the user’s action would yield under the given gain function. This is
thoroughly discussed in[3]. Each user is then characterised by the expected
utility of each state with a discount factor γ.

{
U(G|H) =

∑
a∈H G(a)

P(G|H) = eU(G|H)∑
G′∈SGF

eU(G′|H)

}
⇒ ĜH =

∑

G∈SGF

G× P(G|H)

2. Qualitative class definition: This step is purely human. The experts are
asked to interfere and define the classes that will be used to build the quan-
titative classification. In this stage, the expert intervention is purely based
on his a priori. If the expert’s a priori is invalidated during the process, he
will have to restart from here with an updated point of view.

3. Fitting the classification: To have well classified users a Gaussian kernel
label propagation is used. This provides a probability distribution of mem-
bership to each pattern for each behaviour. An active learning process is
used to iterate the propagation of the labels under the supervision of the
human expert. After each fold, we sample the users randomly and test if
the output probability distribution makes sense. The human expert either
agrees with the results, changes them or tags them as unsure.
If the rate of changed results is high, we continue the active learning loop.
As a result, the rate of bad labels will decay.
Once the classifier stabilizes, we consider the rate of behaviours that the ex-
pert tagged as unsure. If this exceeds a threshold, we roll back to the second
step to challenge the a priori class definitions.
If the unsure tags rate is low enough, we can safely assume that the two
models converged with respect to the expert.

We applied this methodology on a MOOC4 with a sociologist. We started
with an a priori of three user profiles. Up to this date, after three iteration of
the methodology, we were able to identify seven profiles that fulfil the context
needs and to classify the users accordingly.

3 Conclusion

Our method assists a human expert to find the optimal information about the
studied population. Although this work is still in progress and only tested on
MOOC log data, it should be applicable on other log data streams of information.
Future tests will involve marketing related data. We are currently investigating
the efficiency of this method as well as the best techniques to use for each step.
This is part of a preliminary work for a thesis.

4 https://www.fun-mooc.fr/courses/VirchowVillerme/06005/session01/about
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Fig. 1. Users behavioural inference process
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Abstract. Transfer learning algorithms can be used when sufficient
amount of training data is available in the source domain and limited
training data is available in the target domain. The transfer of knowledge
from one domain to another requires similarity between two domains. In
many resource-poor languages, it is rare to find labeled training data in
both the source and target domains. Active learning algorithms, which
query more labels from an oracle, can be used effectively in training the
source domain when an oracle is available in the source domain but not
available in the target domain. Active learning strategies are subjective
as they are designed by humans. It can be time consuming to design a
strategy and it can vary from one human to other. To tackle all these
problems, we design a learning algorithm that connects transfer learning
and active learning with the well-known multi-armed bandit problem by
querying the most valuable information from the source domain.
The advantage of our method is that we get the best active query se-
lection using active learning with multi arm and distribution matching
between two domains in conjunction with transfer learning. The effec-
tiveness of the proposed method is validated by running experiments on
three Telugu language domain-specific datasets for sentiment analysis.

Keywords: Active Learning, Transfer Learning, Multi-Arm Bandit

1 Introduction

People comment on online reviews and blog posts in social media about trend-
ing activities in their regional languages. There are many tools, resources and
corpora available to analyze these activities for English language. However, not
many tools and resources are available to analyze these activities in resource poor
languages like Telugu. With the dearth of sufficient annotated sentiment data in
the Telugu language, we need to increase the existing available labeled datasets
in different domains. However, annotating abundant unlabeled data manually is
very time-consuming, cost-ineffective, and resource-intensive.

To address the above problems, we propose a Multi-Arm Active Transfer
Learning (MATL) algorithm, which involves transfer learning [1] and a combi-
nation of query selection strategies in active learning [3]. One of the prerequisites
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2 Multi-Arm Active Transfer Learning

for transfer learning is that the source and target domains should be closely re-
lated. We use Maximum Mean Discrepancy (MMD) [2] as a measure to find
the closeness between two distributions of the source and target domains. In
this paper, we experiment with sentiment analysis of Telugu language domain
specific datasets: Movies, Political and Sports1. By considering each domain as
the source or target domain, we have a total of 6 domain pairs: M-P, M-S, P-M,
P-S, S-M, S-P. Figure 1 shows two domain pair results. We evaluate the accu-
racy with three different classification techniques viz., support vector machines
(SVM), extreme gradient boosting (XGBoost), gradient boosted trees (GBT),
and meta learning of all these approaches and record the accuracy.

2 Approach & Results
In Multi-Arm active transfer learning approach, it takes both source domain:
S = {unlabeled data instances (SU ), labeled data instances (SL)}, and target
domain: T = {unlabeled data instances (TU ), labeled data instances (TL), test
data instances (TT ) (used for measuring classification accuracy at each itera-
tion)}, iterations (n) as an input. A decision making model is built along with
this approach to predict the posterior probability for each instance of SU . After
calculating the sampling query distribution φ(S(n)), based on multi-arm bandit
approach a best sample instance xin ∈ S is selected for querying. If xin ∈ SU ,
then this selected sample instance (xin) is labeled with an oracle/labeler as yin
and added to SL. Now the classifier (Cn) is trained on the total set {updated
SL,TL}. Using MMD [2], the distance between two distributions is calculated.
This process is repeated until reached query budget. The classification model Cn

is tested on target test data TT to measure the accuracy. The reward (rn(ak(n)))
and observation(on(ak(n))) is updated by comparing the label yin given by the
oracle/labeler with the classifier (Cn(xin)).

 0.5

 0.55

 0.6

 0.65

 0.7

 0  50  100  150  200  250  300  350  400  450  500

A
cc

ur
ac

y 
(%

)

Number of queried instances

Uncertainty Sampling

Random Sampling

QUIRE

QBC

DWUS

MATL

(a) P-S

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0  50  100  150  200  250  300  350  400  450  500

A
cc

ur
ac

y 
(%

)

Number of queried instances

Uncertainty Sampling

Random Sampling

QUIRE

QBC

DWUS

MATL

(b) S-P

Fig. 1. Performance comparison on Sentiment Analysis
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1 Introduction

In this extended abstract1, we consider the “small n, large p” prediction problem,
where the number of available samples n is much smaller compared to the number
of covariates p. This challenging setting is common for multiple applications,
such as precision medicine, where obtaining additional samples can be extremely
costly or even impossible. Extensive research effort has recently been dedicated
to finding principled solutions for accurate prediction. However, a valuable source
of additional information, domain experts, has not yet been efficiently exploited.

We propose to integrate expert knowledge as an additional source of infor-
mation in high-dimensional sparse linear regression. We assume that the expert
has knowledge on the relevance of the features in the regression and formulate
the knowledge elicitation as a sequential probabilistic inference process with
the aim of improving predictions. We introduce a strategy that uses Bayesian
experimental design [2] to sequentially identify the most informative features on
which to query the expert knowledge. By interactively eliciting and incorporating
expert knowledge, our approach fits into the interactive learning literature [1, 8].
The ultimate goal is to make the interaction as effortless as possible for the
expert. This is achieved by identifying the most informative features on which to
query expert feedback and asking about them first.

2 Method

We introduce a probabilistic model that subsumes both a sparse regression model
which predicts external targets, and a model for encoding expert knowledge. We
then present a method to query expert knowledge sequentially (one feature at a
time), with the aim of getting fast improvement in the predictive accuracy of the
regression with a small number of queries.

For the regression, a Gaussian observation model with a spike-and-slab
sparsity-inducing prior [5] on the regression coefficients is used: y ∼ N(Xw, σ2 I),
wj ∼ γj N(0, ψ2) + (1− γj)δ0; γj ∼ Bernoulli(ρ), j = 1, . . . , p, where y ∈ Rn are

1 This extended abstract is adapted from [3].

64



the output values and X ∈ Rn×p the matrix of covariate values. The regression
coefficients are denoted by w1, . . . , wp, and σ2 is the residual variance. The γj
indicate inclusion (γj = 1) or exclusion (γj = 0) of the covariates in the regression
(δ0 is a point mass at zero). The prior expected sparsity is controlled by ρ. The
expert knowledge on the relevance of the features for the regression is encoded
by a feedback model: fj ∼ γj Bernoulli(π) + (1 − γj) Bernoulli(1 − π), where
fj = 1 indicates that feature j is relevant and fj = 0 not-relevant, and π is
the probability that the expert feedback is correct relative to the state of the
covariate inclusion indicator γj .

As the number of covariates p can be large, we assume that it is infeasible,
or at least unnecessarily burdensome, to ask the expert about each feature.
Instead, we aim to ask first about the features that are estimated to be the most
informative given the (small) training data, and frame this problem as a Bayesian
experimental design task [2, 9]. We prioritize features based on their expected
information gain for the predictive distribution of the regression. As the expert
is queried for the feedbacks sequentially, the posterior distribution of the model
and the prioritization are recomputed after each feedback in order to use the
latest knowledge. At iteration t for feature j, the expected information gain is

Ep(f̃j |Dt)

[∑

i

KL[p(ỹ|Dt,xi, f̃j) ‖ p(ỹ|Dt,xi)]

]
,

where Dt = {(yi, xi) : i = 1, . . . , n} ∪ {fj1 , . . . , fjt−1} denotes the training data
together with the feedback that has been given at previous iterations and p(f̃j |Dt)
is the posterior predictive distribution of the feedback for the jth feature. The
summation over i goes over the training dataset. This query scheme goes beyond
pure prior elicitation [4, 6, 7] as the training data is used to facilitate an efficient
expert knowledge elicitation. This is a crucial aspect that enables the elicitation
in high-dimensional regression.

3 Discussion

The proposed method was tested in several “small n,large p” scenarios on synthetic
and real data with simulated and real users [3]. The results confirm that improved
prediction accuracy is already possible with a small number of user interactions,
for the task of predicting product ratings based on the relevance of some of the
words used in textual reviews. Our method can naturally be used on many other
applications where expert feedback is needed, its main advantage being that it
efficiently reduces the burden on the expert by asking first the most informative
queries. However, the amount of improvement in different applications depends
on the type of feedback requested, and on willingness and confidence of experts
to provide the feedback. In addition, appropriate interface and visualization
techniques are also required for a complete and effective interactive elicitation.
These considerations are left for future work.
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